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The 10-fold way - Altland and Zirnbauer

Cartan T C P 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 0 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0



Kitaev: Table displays Bott periodicities of K/KR-theory

Cartan T C P 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 0 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0



Integer Quantum Hall Effect (Klitzing et al., 1980)

D. Thouless et al (1982): Quantum Hall conductivity as c1(T2) = c1(BZ).
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Integer Quantum Hall Effect (Klitzing et al., 1980)

D. Thouless et al (1982): Quantum Hall conductivity as c1(T2) = c1(BZ).

J. Bellissard 1985

Noncommutative Geometry
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C∗-algebras

The observables are modelled by a C∗-algebra, which can be defined as a

*-subalgebra of the bounded operators B(H) for some Hilbert space H closed

with respect to the norm metric:

‖A‖ = sup{‖Aψ‖ : ‖ψ‖ = 1} <∞

Example: A = C0(P ) pointwise multiplication on H = L2(P ).

Example: Compact operators: K(H) closure of finite rank operators on H.

Example: The Toeplitz algebra T on H = `2(N) is generated by the shift

operator S such that (Sf)(0) = 0, and (Sf)(k) = f(k − 1), for k = 1, 2, . . .
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Morita Equivalence.

Algebras A1 and A2 are Morita equivalent if there is a natural equivalence

between the categories of A1-modules and A2-modules.

Example: The compact operators K(H) have only one irreducible

representation (the obvious one defined on H), so they are all Morita

equivalent to each other, and, in particular, to K(C) ∼= C.

Example: The algebra C0(P,K(H)) is Morita equivalent to C0(P ).

Example: The quantum mechanical commutation relations have a unique

irreducible representation (Stone–von Neumann Theorem), so they are also

Morita equivalent to K(H), and to C.
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Algebra-Topology dictionary

Geometry ←→ Algebra

Gel’fand-Naimark:

loc. cpt Hausdorff space P −→ comm. C∗-algebra C0(P )

spectrum of A (irreps) ←− comm. C∗-algebra A
Serre-Swan:

vector bundle over P ←→ finite rank projective C0(P )-module

K∗(P ) ←→ K∗(C0(P )) ∼ projections



K-theory of C∗-algebras.

For any C∗-algebra A we may define K0(A) to be the equivalence classes of

projections in M∞(A), the matrices of arbitrary size with entries in A,

where homotopy equivalence, unitary equivalence, and von Neumann

equivalence (p = u∗u ∼ q = uu∗), amongst others, all give the same

K-theory.

One can also define K1(A) = K0 (C0(R,A)).

Morita equivalent algebras have the same K-theory.
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Bulk and boundary: the Toeplitz algebra

The Toeplitz algebra T generated by the shift S on `2(N), plays an

important role for the unit disc D with boundary unit circle S1.

The Hardy space H2(S1), is the subspace of functions in L2(S1) which

extend holomorphically to D; there is an associated (positive energy)

projection P : L2(S1)→ H2(S1).

The pointwise multiplication action of C0(S
1) on L2(S1) ∼= `2(Z) can be

restricted to H2(S1) ∼= `2(N) and gives an action of the Toeplitz algebra:

T ∼= P C0(S
1)P.



The algebraic bulk-boundary correspondence

J. Kellendonk, T. Richter and H. Schulz-Baldes (2002)

boundary −→ ”glue” −→ bulk

or

0 −→ K⊗ Ê −→ T (Ê) −→ B̂ −→ 0,

where T (Ê) ≤ T ⊗ Ê is a Toeplitz algebra.

There is a Pimsner–Voiculescu (PV) exact hexagon of the algebraic K-groups:

K0(Ê) −→ K0(T ) −→ K0(B̂)
↑ ↓

K1(B̂) ←− K1(T ) ←− K1(Ê).
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The Pimsner-Voiculescu index maps

It can be shown that Kj(T (Ê)) ∼= Kj(Ê).

K0(Ê) −→ K0(E) −→ K0(B̂)
↑ ↓

K1(B̂) ←− K1(E) ←− K1(Ê).

The vertical arows in the Pimsner–Voiculescu (PV) are not so easy to handle
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Periodic potentials

Bloch–Floquet Theory Stationary solutions of Schrödinger’s equation

− ~2

2m
∇2ψ + V ψ = Eψ

with periodic potential V (x+ aj) = V (x), for j = 1, 2, 3 can be written as

ψ(x) = eik.x/~uk(x)

where uk(x) ihas the same periodicity as V , and k has periodicity with

respect to integral combinations of a′1 = ~a2 × a3/[a1,a2,a3], a
′
2, a′3, and

the energy comes in bands En(k), for n ∈ N.



The Lattice Representation of the CCR

As well as the Schrödinger representation of the canonical commutation

relations on L2(Rd), and the Fock–Bargmann–Segal representation on

square-integrable holomorphic functions on Cd, there is Cartier’s lattice

representation on L2 sections of a line bundle over T2d, induced from a

lattice in phase space, which for d = 3 can be taken to be generated by

{a1,a2,a3,a′1,a′2,a′3}.

For d = 1 on T2 with periods {a, ~/a}:

-
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pointwise multiplication −→ convolution multiplication
pointwise evaluation −→ integration



The Lattice Representation of the CCR

As well as the Schrödinger representation of the canonical commutation

relations on L2(Rd), and the Fock–Bargmann–Segal representation on

square-integrable holomorphic functions on Cd, there is Cartier’s lattice

representation on L2 sections of a line bundle over T2d, induced from a

lattice in phase space, which for d = 3 can be taken to be generated by

{a1,a2,a3,a′1,a′2,a′3}.

For d = 1 on T2 with periods {a, ~/a}:

-

66 66
-

~a−1

a

6

--

--
6

~a−1

a

-
F

a

pointwise multiplication −→ convolution multiplication
pointwise evaluation −→ integration



T-duality: R↔ ~R−1 preserves the physics

-

6

~R−1

R

-

-

6R

~R−1

String theory (Buscher, Hull and Townsend, . . .)

T-duality: Momentum and winding number interchange

Added ingredient: flux H ∈ H3(P )



The algebraic T-dual

α : V → Aut(A).

Crossed product Â = Aoα V = C0(V,A) has α-twisted convolution

(f ∗ g)(v) =

∫
V

f(u)αu[g(v − u)] du,

f∗(v) = αv[f(−v)]∗

The T-dual of A with α : V → Aut(A) is the crossed product

Â = Aoα V.

A lattice L in V acts trivially on the spectrum, so it looks more like the

action of the torus V/L.



Takai–Takesaki T-duality

For V abelian: the Pontryagin dual V̂ = Hom(V,T) ⊂ C0(V,T) acts by

multiplication on the T-dual Aoα V .

(Takai-Takesaki duality) Âo V̂ ∼= A⊗K(L2(V )) ∼M A.

The T-dual of Â is Morita equivalent to A.

In the previous discussion we may take

B̂ := Ê oα′ Z.



The geometrical picture

Schematically we expect

interior −→ bulk −→ boundary

Algebras:

0 −→ I −→ B −→ E −→ 0.



Induced Algebras: pointwise multiplication

Let α be a homomorphism from Z to the automorphisms Aut(E).

The induced algebra consists of E-valued functions on R, with a periodicity

condition:

indRZ(E , α) = {f ∈ C0(R, E) : f(x− n) = α(n)[f(x)]}

and with the pointwise product.

Set B = indRZ(E , α)

Also set I = C0((0, 1), E) ∼= C0(R, E).

Functions in I = C0((0, 1), E) extend “periodically”to give functions in B.

Functions in B can be evaluated at 0 to give functions in E , and I is the

kernel of this map.



The maps I → B and B → E give the expected exact sequence

0 −→ C0((0, 1), E) −→ indRZ(E , α) −→ E −→ 0.

or

0 −→ I −→ B −→ E −→ 0.

Again there is a PV exact hexagon of the algebraic K-groups:

K0(I) −→ K0(B) −→ K0(E)
↑ ↓

K1(E) ←− K1(B) ←− K1(I).

When the algebras are related by T-duality,

the geometric and physical PV hexagons are the same up to degree shifts!
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The geometrical picture rewritten

The interior algebra I = C0(R, E) is the suspension of E , so that

Kj(I) = Kj−1(E).

So the PV hexagon:

K0(I) −→ K0(B) −→ K0(E)
↑ ↓

K1(E) ←− K1(B) ←− K1(I).



The geometrical picture rewritten

The interior algebra I = C0(R, E) is the suspension of E , so that

Kj(I) = Kj−1(E).
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K1(E) ←− K1(B) ←− K0(E).



The geometrical picture rewritten

The interior algebra I = C0(R, E) is the suspension of E , so that

Kj(I) = Kj−1(E).

So the PV hexagon rotates to:

K1(E) −→ K1(E) −→ K0(B)
↑ ↓

K1(B) ←− K0(E) ←− K0(E).



Can we reconstruct the physical picture from the

geometrical picture?

Given B = indRZ(E , α), and the geometrical PV sequence, and supposing that

ε : Rd−1 → Aut(E) (d− 1 = dim(E)), the T-duals are:

Ê := E oε Rd−1,

B̂ := B oβ Rd

where β := τ × ε : Rd = R× Rd−1 → Aut(E), with τ the translation

automorphism B = indRZ(E , α):

(τ(t)f)(x) = f(x− t).

Can we reconstruct the physical PV sequence and Toeplitz algebra?



From

Ê := E oε Rd−1,

B̂ := B oβ Rd,

we get

B̂ := B oβ Rd

= indRZ(E , α)oβRd

= indRZ(E oε Rd−1, α)oα R

= indRZ(Ê , α)oα R.



Green’s Theorem:

indRZ(A, α)oτ R ∼= (Aoα Z)⊗K(L2(R/Z))

which is Morita equivalent to Aoα Z,

so B̂ ∼= Ê oα Z, as asserted.



Connes’ Thom Isomorphism Theorem: There is a natural transformation of

functors giving

Kj(Aoα RD) ∼= Kj+D(A).

Kj(Ê) = Kj(E oε Rd−1) ∼= Kj+d−1(E),

Kj(B̂) = Kj(B oε Rd) ∼= Kj+d(B).

Paschke’s gloss on the Connes’ Thom theorem showed how to reconstruct

the Toeplitz algebra.



Using

Kj(Ê) ∼= Kj+d−1(E), Kj(B̂) ∼= Kj+d(B),

and the geometric PV hexagon

K1(E) −→ K1(E) −→ K0(B)
↑ ↓

K1(B) ←− K0(E) ←− K0(E).

we obtain (with Bott periodicity):

Kd(Ê) −→ Kd(Ê) −→ Kd(B̂)
↑ ↓

Kd+1(B̂) ←− Kd+1(Ê) ←− Kd+1(Ê),

the physical PV sequence (since Kj(T (Ê)) ∼= Kj(Ê)).



What about H-flux mathematically?

Dixmier–Douady Theorem (1963). For every locally compact space P

and δ ∈ H3(P,Z) there is a C∗-algebra A = CT (P, δ) (a continuous trace

algebra) with spectrum P and Dixmier–Douady obstruction δ, and it is

unique up to Morita equivalence, ie all such algebras have the same

representation theory.

A continuous trace algebra CT(P, δ) may be thought of as an algebra of

sections of a compact operator bundle over P .

The Dixmier–Douady class may be thought of as the H-flux through P .



What about H-flux physically?

One feature in T-duality is that one usually has an H-flux H ∈ H3(X,Z),
which is not prominent in condensed matter problems.

Screw dislocations in crystals:



Wild speculation

Could it feature in the spin ice analogues of magnetic monopoles found

recently (Castelnovo et al. Nature 49 2008)?

Dipoles at the tetrahedron vertices point either in or out, and normally there

are two of each, but one can create anomalous regions with an imbalance of

inward and outward pointing dipoles in pyrochlore lattices such as Dy2Ti2O7.



The End


