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Topological phase of periodic gapped systems

H: Hilbert space,
U : G = Zd ↷ H: unitary representation∫ ⊕

k∈Ĝ

H ∈ B(H): s.a. operator (Hamiltonian) s.t. UgHU∗
g = H∫ ⊕

k∈Ĝ
⇒ H =

∫ ⊕

k∈Td
Hkdk .

Assumption
The Hamiltonian H has a spectral gap at µ ∈ R.

We say that H1 and H2 are in the same topological phase if
E≤µ(H1) ∼= E≤µ(H2) as vector bundles.
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Topological phase of periodic gapped systems

H := L2(Zd ,CN): Hilbert space,
U : G = Zd ↷ H: shift representation∫ ⊕

k∈Ĝ
⇒ H = L2(Td ,CN),

H ∈ B(H): s.a. operator (Hamiltonian) s.t. UgHU∗
g = H∫ ⊕

k∈Ĝ
⇒ H = (Hk) ∈ C(Td ,MN).

Assumption
The Hamiltonian H has a spectral gap at µ ∈ R.

We say that H1 and H2 are in the same topological phase if
E≤µ(H1) ∼= E≤µ(H2) as vector bundles.
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The K0-group
K0(X ) := G(VectC(X )) (the group completion). Therefore,

f : (topological phases) ∼= VectC(Td) → R

which is additive (f (H1 ⊕ H2) = f (H1) + f (H2)),

VectC(Td) f // R

K0(Td)

Example: The first Chern number for d = 2;

c1(E≤µ(H)) := −1
2πi

∫
T2

tr(px [∇1, px ][∇2, px ])dx

(px : orthogonal projection onto E≤µ(H)x).
Rem. In 2d IQHE, it is related to the Hall conductance by the
TKNN formula.
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Main result

Two Questions
1 What is the relevant observable algebra for non-periodic

systems?
2 How to deal with symmetry of quantum mechanics?

”Theorem” (K.’16)
The twisted equivariant K0-group of the uniform Roe
algebra classifies topological phases controlled over X .
The invariant so called index is defined. It satisfies the
bulk-boundary correspondence.
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(1)Algebra of observables

In the study of periodic systems, the algebra of observables is
C(Td ,MN) ∼= C ∗

r (Zd) ⊗ MN (whose K0-group is K 0(Td)).
For the classification of all topological phases, we need the
C∗-algebra A containing all possible observables. In particular,
it should contain

H + V

for all V ∈ cb(Zd ,MN).
The smallest C∗-algebra containing C ∗

r (Zd) ⊗ MN and all
potential functions is the ‘crossed product’ Zd ⋉ cb(Zd ,MN).
Although it is too big (not even separable) to apply some
functional analysis, we can study its topology from the
viewpoint of metric space geometry.
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Coarse C∗-algebras
Let X be a discrete metric space and H := ℓ2(X ).
Definition
We say that

T ∈ B(H) is controlled if ∃R > 0 s.t. Txy = 0 for
d(x , y) > R ,
T ∈ B(H∞) is locally compact if T δx , δxT ∈ K,

C ∗
u (X ) := {T ∈ B(H) | controlled }

C ∗(X ) := {T ∈ B(H∞) | controlled, locally compact}
Then,

C ∗
u (|Zd |) ∼= Zd ⋉ cb(Zd), C ∗(|Zd |) ∼= Zd ⋉ cb(Zd ,K)

Rem. cb(Zd) ⊗ K ̸= cb(Zd ,K).
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Coarse Mayer-Vietoris sequence
Let X := Zn, Y± := Zn−1 × Z± and Z := Y+ ∩ Y− = Zn−1.
Then, we get the following Mayer-Vietoris type exact sequence

· · · →K∗(C ∗
u (Z )) → K∗(C ∗

u (Y+)) ⊕ K∗(C ∗
u (Y−)) → K∗(C ∗

u (X ))
∂MV−−→ K∗−1(C ∗

u (Z )) → K∗−1(C ∗
u (Y+)) ⊕ K∗−1(C ∗

u (Y−)) → · · · .

The boundary map ∂MV : K0(C ∗
u (X )) → K−1(C ∗

u (Z )) is given
by

[p] 7→ ∂[π(P+pP+)]

where P+ is the projection onto ℓ2(Y+) and ∂ is the boundary
map associated with

0 → C ∗
u (Z ⊂ Y+) → C ∗

u (Y+) → C ∗
u (Y+)/C ∗

u (Z ⊂ Y+) → 0
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Quasi-crystals

X ⊂ Rd is a Delone set if it is
uniformly discrete i.e. ∃r > 0 s.t. B(r , x) ∩ X ≤ 1 for
∀x ∈ Rd and
relatively dense i.e. ∃R > 0 s.t. B(R , x) ∩ X ≥ 1 for
∀x ∈ Rd .

Lemma
The above X is a proper metric space with bounded geometry
and C ∗

u X ⊗ K ∼= C ∗
u |Zd | ⊗ K.
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(2)Symmetry of quantum mechanics

Let H, U , H be as in IQHE.
In the case of type AII topological insulators, we also assume
that ∃T : H → H s.t.

T is antilinear,
TUg = UgT and T = (T k : Hk → H−k)k∈T2 is
continuous ,
TH = HT , T 2 = −1,

Then, the projection Eµ(H) is a ”quartanionic vector bundle”
on T2 (with the real structure τ : k 7→ −k) and hence an
element in KQ0(T2, τ).
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(2)Symmetry of quantum mechanics

Let H, U , H be as in IQHE.
In the case of type AIII topological insulators, we also assume
that ∃P : H → H s.t.

P is linear,
PUg = UgP and P = (Pk : Hk → Hk)k∈T2 is
continuous,
PH = −HP , P2 = 1,

Then, the pair (H |H |−1, P) (+α) determines a ”chiral vector
bundle” (Nittis-Gomi’15) on T2 and hence an element in
K1(T2).
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Wigner’s theorem
H: Z2-graded separable Hilbert space.
→ PH := (H \ {0})/T: the space of states.
It is equipped with the function

Φ( , ) : PH × PH → R>0, Φ([ξ], [η]) = | ⟨ξ, η⟩ |
∥ξ∥ ∥η∥

.

The group of symmetries in quantum mechanics:
Autqtm(PH) := {f : PH → PH | f ∗Φ = Φ, f γ = γf }

Theorem (Wigner’s theorem)
Autqtm(PH) ∼= Autqtm(H)/T

where
Autqtm(H) := (linear/antilinear and even/odd unitaries on H).
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Twists
Definition
A symmetry of quantum mechanics is a group homomorphism
G → Autqtm(PH).

Gτ Autqtm(H)

��

// Z2 × Z2

G // Autqtm(PH)

Theorem (Freed-Moore’13, K.’16)
The data (ϕ, c , τ) is classified by the set⊔

ϕ∈Ȟ1(G;Z2)

Ȟ1(G ;Z2) ⋉ϵ Ȟ2(G ;T).
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The twisted equivariant K-group

G : finite group,
(ϕ, c , τ): twist on G ,
A: ϕ-twisted (Z2-graded) G-C∗-algebra i.e. G ↷ A s.t.
αg is linear/antilinear if ϕ(g) = 0/1.

We define the twisted equivariant K-group ϕKG
∗,c,τ (A) for these

data. It gives a functor

ϕKG
∗,c,τ : ϕCalgG

Z2 → Ab,

which is a canonical generalization of KG
∗ and KRG

∗ .
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The twisted equivariant K0-group
ϕKG

0,c,τ is related to topological phases with the symmetry
given by (G , ϕ, c , τ).
Assume the Z2-grading of A is trivial.

Definition
We say that V is a (ϕ, c , τ)-twisted representation of G if V is
a Z2-graded vector space with ϕ-linear, c-graded and
τ -projective representation of G .

Set

FG
c,V(A) := {s ∈ A ⊗̂K(V)sa | s2 = 1, αg(s) = (−1)c(g)s}

Theorem
ϕKG

0,c,τ (A) = ∪
V F

G
c,V(A)/ ∼homotopy

H with HUg = (−1)c(g)UgH ⇒ [H |H |−1] ∈ ϕKG
0,c,τ (A).
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Index for topological phases
X be a Delone subset of Rd ,
G be a finite group with G ↷ Rd ,
(ϕ, c , τ) be a twist of G ,
X = Y+ ∪ Y− (G-invariantly) with Z := Y+ ∩ Y− ∼ Zd−1.

Then, topological phases are classified by ϕKG
0,c,τ (C ∗

u (X )).

Definition
An edge topological phase is an element of
Im ∂ ⊂ ϕKG

−1,c,τ (C ∗
u (Z )).

Here ∂ is the boundary map for C ∗
u (Z ) ⪇ C ∗

u (Y+).
The inclusion C ∗

u (X ) ⊂ C ∗(X ) induces group homomorphisms
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u (X )) → ϕKG
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−1,c,τ (C ∗(Z )) ∼= ϕKG
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Main result
Let

X be a Delone subset of Rd ,
G be a finite group with G ↷ Rd ,
(ϕ, c , τ) be a twist of G ,
X = Y+ ∪ Y− (G-invariantly) with Z := Y+ ∩ Y− ∼ Zd−1.

Definition-Theorem
We say that TPb(X ; G , ϕ, c , τ) := ϕKG

0,c,τ (C ∗
u (X )) is the

set of bulk topological phases.
We say that
TPe(Z ⊂ Y+; G , ϕ, c , τ) := Im ∂ ⊂ ϕKG

−1,c,τ (C ∗
u (Z )) is

the set of edge topological phases.
The index satisfies the bulk-boundary correspondence.
That is, indbulk = indedge ◦∂MV.
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ϕKG
0,c,τ (C ∗

u (X )) //

∂MV

��

ϕKG
0,c,τ (C ∗(X ))

∂MV

��

cBC

((
ϕKG

0,c,τ (Cℓ0,d)

ϕKG
−1,c,τ (C ∗

u (Z )) // ϕKG
0,c,τ (C ∗(Z ))

cBC
66
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Example: CT-symmetries
We consider the case that (ϕ, c) : A → Z2 × Z2 is injective.
Choices of (A, τ) are classified by

C 1 = ±1 and T 2 = ±1

(C , T ∈ Aτ are lifts of (1, 1), (1, 0) ∈ A s.t. (CT )2 = 1).
There are 10 choices of such (A, τ). For each of them,
ϕKA

0,c,τ ( ) coincides with K∗ or KR∗ as following.

A 1 P T C G

C 2 aaaa
aaaa

aaaa
aaaa 1 −1 1 1 −1 −1

T 2 aaaa
aaaa 1 −1 aaaa

aaaa 1 −1 1 −1
ϕC ∗

c,τA C Cℓ1 M2(R) H Cℓ0,2 Cℓ2,0 Cℓ1,2 Cℓ0,3 Cℓ2,1 Cℓ3,0
ϕKA

0,c,τ K0 K1 KR0 KR4 KR2 KR6 KR1 KR3 KR7 KR5
Cartan A AIII AI AII D C BDI DIII CI CII

Table: The 10-fold way and Clifford algebras
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dim A AIII AI BDI D DIII AII CII C CI
0 Z 0 Z Z2 Z2 0 Z 0 0 0
1 0 Z 0 Z Z2 Z2 0 Z 0 0
2 Z 0 0 0 Z Z2 Z2 0 Z 0
3 0 Z 0 0 0 Z Z2 Z2 0 Z

Table: Kitaev’s periodic table

cf. Bott periodicity

πi(U) ∼=
{

Z i = 2n + 1
0 i = 2n , πi(O) ∼=


Z i = 8n − 1, 8n + 3
Z2 i = 8n, 8n + 1
0 otherwise
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Example: reflection-invariant systems
G = A × R, where R ∼= Z2 acting on the material as a
reflection.Choices of (G , τ) is classified by

C 2 = ±1, T 2 = ±1, TR = ±RT , PR = ±RP

(P := CT , R is the lift of the generator of R s.t. R2 = 1).
It is not difficult to determine the finite-dimensional algebras
G ⋉ϕ

c,τ Cℓ0,d and we get

ϕKG
0,c,τ (Cℓ0,d) ∼=



ϕKA
d−1,c,τ (R) if (ϵ, ν) = (+, +),

ϕKA
d+1,c,τ (R) if (ϵ, ν) = (+, −),

ϕKA
d ,c,τ (R)2 if (ϵ, ν) = (−, +),

Kd ,c,τ (R) if (ϵ, ν) = (−, −).

where RP = ϵPR and RT = νTR .
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Classification of reflection invariant topological phases
Takahiro Morimoto and Akira Furusaki, Topological classification with additional symmetries from Clifford algebras,

Phys. Rev. B 88, 125129.
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Example: 1D type A reflection invariant systems

ind: K0
R(T1) → KR

0 (Cℓ0,1) ∼= Z.

The simplest vector bundle with nontrivial index is E → T1

s.t. E |0 ∼= V+ and E |π ∼= V− (V± ∼= C with the Z2-action
given by ±1).
The corresponding Hamiltonian is

H := 1
2

(
s + s∗ i(s − s∗)

i(s − s∗) −(s + s∗)

)
∈ B(ℓ2(Z; V+ ⊕ V−)),

where s is the shift operator.

cf.) the clean Kitaev chain (a 1D type BDI systems):

H = 1
2

(
s + s∗ + 2µ −i(s − s∗)
−i(s − s∗) −(s + s∗ + 2µ)

)
,

(µ: chemical potential).
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