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Overview

Gapped phases, e.g. topological insulators, can be classified by
bundle invariants — noncommutative/twisted /equivariant
(KR)-cohomology invariants. Experiments: late 2000s.

Topological Weyl semimetals were experimentally realised in
2015/16, and advertised as the elusive “Weyl fermion”. General
mathematical characterisation still lacking.

[M+T, arXiv:1607.02242] Globally, topological semimetals realise
invariants of “singular” bundles, connection to insulators is an
extension problem. Tools: MV-principles, generalised degree
theory, gerbes, Clifford modules. . .
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Relativistic fermions and Clifford algebra

Convention. C/, s is real Clifford algebra, anticommuting
e1,..., e squaring to —1 and e,41, ..., es squaring to +1.
Cl, is complex Clifford algebra on n generators.

Elementary particles <> unitary irreps of Poincaré group. Solutions

to relativistic wave eqn provide examples, and can be built from
2tol

irreps of SL(2,C) = Spin(3,1) —— S0Op(3,1).

Spin(3,1) C Cl;l C Clg and Clgy = My4(C) has a unique irrep on
S = C* (Dirac spinor). Clifford multiplication is implemented by
the 4 x 4 gamma matrices v satisfying y#~" + 7 ~y* = 2g.

The chirality element 7° = i7%y1y243 commutes with Spin(3, 1),
decomposing S = St @ SR 4 = (¢, 1R) according to its
+1-eigenspaces. The spin irreps SL/R are the two-component
left /right handed Weyl spinors.
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Relativistic Dirac and Weyl equations

Massive Dirac equation is () — m)y = 0 where [) = iy#0,, is the
Dirac operator. When m = 0, the massless Dirac equation
decouples into two independent Weyl equations
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3
where LDL/R =10y F 120’8,- and o' are the Pauli matrices.
i=1

| S
Weyl Hamiltonian

Fourier transform id,, — p, turns the Weyl Hamiltonians into

HYR(p) = £pio’ € Mo(C),  p= (p1, p2, p3) € R3.
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Weyl Hamiltonian dispersion
Eigenvalues of HY/R(p) are E(p) = %|p| = linear dispersion.
Degenerate zero-energy mode at |p] = 0. Symmetry of the
spectrum — particle/antiparticle pairs.
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Condensed matter “Weyl fermions” come from H which look locally like
H/R_Important differences: (1) quasi-momentum k € T rather than

pE I@E (2) non-isotropic dispersion, (3) Weyl charges annihilate instead
of forming a Dirac spinor.



Condensed matter Weyl fermion

Electron motion in a crystalline material is described by a
Z9-invariant Hamiltonian H acting on L?(R9). Brillouin zone of
quasi-momenta in soIid—state/Bhysics is topologically the
Pontryagin dual torus T = Zd.

Bloch—Floquet transform turns H into a (smooth/cts) family of of
Bloch Hamiltonians H(k) on a Hilbert bundle whose fibre at
k € T9 comprises the k-quasiperiodic Bloch wavefunctions.

One generally studies the restriction of H(k) to a finite-rank
low-energy subbundle S (or uses tight-binding model).

We're interested in (smooth/cts) families of finite-dimensional
Hamiltonians. Could be Bloch, or just some parametrised family.
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Bloch Hamiltonians

k

Spec(H) form energy bands, Epermi = insulator/metal /semimetal (L to
R). Energy dispersion near a two-band crossing looks linear, so the
quasiparticle excitations ~ Weyl fermions (allegedly).

Insulators: Fermi proj. onto E < Eperm; defines a valence subbundle
ErF C S (in a bundle category determined by symmetries).
Semimetals: £ only defined on complement of crossings W.
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Semi-metal or insulator?

Can a semi-metal can be perturbed into an insulator?

E E

This is not simply a matter of modifying the spectrum E(k). In
fact, there are local and global topological obstructions to
modifying H(k) in order to “open a gap", so semimetal band
structures can be very robust!
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Basic two-band Weyl semimetal in 3D — Sketch
2 x 2 traceless H(k) = h(k) - o = 33, hi(k)o; for some vector
field h over T3, with spectrum =|h(k)|. Bands cross precisely at
zeroes of h, generically a set W of isolated Weyl points.

On T3 \ W, valence line bundle &¢ is well-defined. Restricted to a small
2-sphere S7, surrounding w; € W, its Chern class in H*(S2 ,Z) = Z is
equal to the local index of h at w; (deg. of h = % 0 So, — S C R?).



Weyl semimetal in 3D and Fermi arcs
Globally, >~;Ind(w;) = 0 by Poincaré-Hopf. Weyl points come in
pairs with local index 1. Experimental signature is a “Fermi arc”
connecting Weyl points, and was found in 2015/16.

Weyl nodes and Fermi arcs

T

3

Fermi arcs

+
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(L) S--Y. Xu et al, Discovery of a Weyl Fermion semimetal and topological Fermi arcs, Science 349 613 (2015);
(R) [—] Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nature Phys. 11 748 (2015).
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Abstract semimetal

H(k) = h(k) - o is a local, basis-dependent expression. More
generally, the Bloch bundle S is a complex Hermitian U(2)-bundle
over a compact 3-manifold T (of momenta).

Bundle of traceless Hermitian endomorphisms of S is a real
oriented rank-3 bundle F with metric g(Hy, Ho) = itr(HiH,).
Structure group is PU(2) = SO(3) under adjoint action, liftable to
Spin€(3) = U(2).

S is a Clifford module bundle for Cliff(F, g). Thus an orthonormal
frame {e1, &, e3} of F is quantized to a set of Pauli operators
{01,02,03}. Similarly, a section h € T'(F) is quantized to c(h),
which on S looks locally like c(h)(k) = h(k) - o
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Abstract semimetal

The square of h in the Clifford algebra is its length-squared, so
Spec(c(h)) = +1h| in any Clifford module bundle such as S, e.g.
can twist § by some line bundles. The local Weyl charge
information is in h and its zeroes.

This abstraction is useful for constructing and analysing
generalizations of “Dirac-type Hamiltonians” in higher dimensions,
which condensed matter physicists are quite fond of.

Furthermore, the (real) representation theory of Clifford algebras
can already suggest which antiunitary symmetries (time-reversal /
particle-hole) could be present; reciprocally, such symmetries can
isolate the Dirac-type Hamiltonians as the compatible ones!

1E.g. traceless 2 x 2 Hamiltonians are precisely particle-hole symmetric ones.
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Semimetal — insulator extension problem

The local charge at H?(S2,,7Z) = 7 measures the obstruction to
opening a gap at w;. These are “monopoles of Berry curvature”
for the line bundle &f.

These local obstructions are not independent — globally there is
an extension problem for &¢, from T3\ W to all of T3. This global
obstruction to “opening up all the crossings” (semimetal —
insulator) is captured by a Mayer—Vietoris sequence.

Notation: write T for T3, and W = ]_[,- W; C T. Its tubular
neighbourhood is Dy = [[; Dw,, whose boundary is a bunch of
2-spheres Sy = [[; Sw;.
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Mayer—Vietoris principle
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Mayer—Vietoris principle

Apply MV to the cover T = (T \ W)U Dy, whose intersection is
Sw. Possibly singular line bundles <+ H?(T \ W,Z):

0 HA(T) X H2(TAW) T HA(Sy) 5 HY(T) =0

—— N——— N

insulators insulator/semimetal local charges

» Exactness = X local charges of a candidate semimetal in
H?(T \ W) must cancel.

» A candidate semimetal which comes from H?(T) can be
gapped into an insulator (Ef extends across W). Exactness
= insulators contribute no local charge.

» Need > 2 points in W so that H?>(T \ W) contains elements
which don't come from H?(T) — “topological semimetal”.
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Gerbes from semimetals — sketch

Gerbes had been used [Gawedzki '15] to study topological
insulators. They also appear in semimetals:

Let w be a (Weyl) point in T. Cover T with the complement

Uy = T\ {w}, and neighbourhood Uy = D,, = R3 of w. Then
UgnU; 2 S2 xR ~p S, = S2. Take the line bundle

Lo1 — U N Uy pulled back from the generator of H2(S2,7). The
corresponding gerbe generates H3(T,Z) = Z.

The “semimetal gerbe” has at least two Weyl points and is trivial.

In higher d, a semimetal has a codim-3 “Weyl submanifold”
W =[] W;. For the corresponding gerbe, each W; contributes to
H3(T,Z) the Poincaré dual of W;, and these must sum to zero.
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Insulator bulk-boundary correspondence — Heuristics

For insulators, non-trivial Ef is detected through metallic
behaviour at the material boundary. Heuristic: interpolating £ to
vacuum requires violation of the insulating condition on the
boundary. Furthermore, the boundary states inherits some
topological data from the bulk.

Example: 2D Quantum Hall Effect is characterised by a Chern
number. Boundary states are chiral with quantised conductivity.

Mathematically, there is a push-forward under the map 7 which
projects out the direction orthogonal to boundary,

m H?(T?) — HY(T!)
S—— ——
Invariant for 2D insulator 1D boundary invariant
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Semimetal bulk-boundary correspondence — Heuristics

E4

SEMIMETAL
SPECTRUM
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Poincaré duality and boundary Fermi arcs

Let T = T3. Mathematically, the bulk-boundary homomorphism
for semimetals is most conveniently defined via Poincaré
(Lefschetz/Alexander) duality, i.e. H?(T \ W) = Hy(T, W).

Let 7 be projection of T onto a 2-subtorus T, and W := m(W) be
the projected Weyl submanifold. We define m by the diagram

HA(T\ W) ———— Hy(T, W)

HY(T\ W) <12 Hy(T, W)

~

Boundary Fermi arcs are precisely the new relative cycles in
H1(T, W) compared to the usual torus cycles in Hy(T)!
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+ C=0 Cc=1 C=0 A C=1 C=0 C=-1

Fermi arcs are global objects — not simply labelled by local charges at their
end points (clarified in [M+T'16]). E.g. a Dehn twist takes the left config. to
the right config. in the blue box, inducing a non-identity map on Hi(T, W).
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Tunable Fermi arcs

(c) e=1.00m @=1.10m @=1.20m @=1.23m

@=1.251 @ =130 @=1.40r @=1.50m

il

Fermi arcs for model Hamiltonians in [Dwivedi+Ramamurthy,
arXiv:1608:01313] with tuning parameter ¢. Also [Liu+Fang+Fu,
1604:03947]. Easy to analyse in our framework: horizontal and vertical
configurations are homologous rel W (“rewirable”); arcs differing by
some torus cycle cannot be “rewired” continuously.
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Generalisations to more bands and higher dimensions

Take d = 5, n = 4, so the Bloch Hamiltonians H(k), k € T® are
4 x 4 matrices. Consider Dirac-type Hamiltonians

H(k) = h(k)-~, {7, +} =280~ =(),i=1,...,5

Spectrum of H(k) is £|h(k)|. Doubly degenerate e-values, which
become 4-fold degen. at zeros of h (generically at points in T°).

‘ A crossing at w is protected by the local index of h,
equal to the degree of h = ﬁ . S = S*C R
Globally the >~ ;Ind(w;) = 0 by Poincaré-Hopf.
/\/\ Generically, dispersion near w is linear looks like that of

4-component massless Dirac fermion with both
particle/antiparticle d.o.f. (red herring).




Generalisations to more bands and higher dimensions

Dirac-type 4 x 4 Hamiltonians H(k) = h(k) -~y in are convenient,
but not generic, and again local, basis-dependent.

Actually, they are distinguished by compatibility with fermionic
T-symmetry? (quaternionic structure Q). Globally, this is a
reduction of a U(4) Bloch bundle S to a Sp(2) = Spin(5) bundle
(not all U(4) gauge trans. preserve H = h -~ form).

Abstractly, we can consider a rank-5 oriented real vector bundle F
over a compact 5-manifold T, with fibre metric g. A section
h € T(F) is quantized to c(h) € Cliff(F, g).

2Actually a TP symmetry.
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Higher n, d generalisations

On a spinor bundle S (or any Clifford module bundle), the analysis
of the Spec(c(h)) is the same as before. In particular, a four-band
crossing at w is protected by the local index of h at w.

Away from W, there is a rank-2 valence subbundle £¢, which is
really a quaternionic line bundle. We can regard h (locally) as a
map to S* ~ HP! (c.f. $2 ~ CP! in the two-band case).

There is again an extension problem of & from T\ W to T. In
d = 5, quaternionic line bundles are stable, and we can use the
MV-sequence in KSp to study the semi-metal — insulator problem.
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~v-quadratic Hamiltonians

In a spinor bundle, @ A b determines the concrete Hamiltonian
Hab(k) = % (a(k) A b(k)),~', where [ is a 2-multi-index.

Spec(Ha p(k)) = =|a A b|(k) — two-fold degenerate eigenvalues
becoming 4-fold degenerate at zeroes of @ A b. Looks identical to

~-linear case, but as we will see, topological protection of crossings
is very different!

In fact, we can easily find the spectrum of the general

c(@anb+cAnd)=Hap+ Heg. Writing A =|aAb|, u=|cAd]|,
the spectrum is (X & p).
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AK)

Alk)-p(k)

E=0

-A(K)+Hu(k
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-A(k)-u(k)

Spectrum of y-quadratic Hamiltonians. We are interested in 4-band
crossings, which occur at A = g = 0, and whether they can be gapped.
Might as well take ¢ — 0.
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~v-quadratic Hamiltonians

[E. Thomas '67] There is a subtle local index for vector 2-fields

a, b over a 5-manifold, for points where a A b =0 (linearly
dependent), and an analogue of Poincaré—Hopf. This invariant is
given by the homotopy class of the map (a, i)) : S} — Vs (Stiefel
manifold), and 74 (Vs 2) = Zs.

Recall the fibration S3 = Va1 —Vso = Vs1 = S% where the S*
base parametrises the choice of €1, and the fiber parametrises the
choice of e, orthonormal to e;. m4(Vs2) = Zy comes from the
famous 74(S3) = Z,.

This suggests a subtle topological Zjy-semimetallic phase.
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Summary + Outlook

Abstracted semimetal topological invariant in Clifford algebraic
language, paving the way for generalizations to semimetallic
“Dirac-type Hamiltonians".

Analysed semimetal/insulator relationship globally, as an extension
problem, using MV.

Identified Fermi arc topological invariant, whence the problem of
“tuning/rewiring” Fermi arcs is easy to analyse.

Point symmetries such as P imposes an equivariance condition on
vector fields h (whose quantizations are Dirac-type Hamiltonians).
An equivariant index captures local gap-opening obstructions —
relevant in experiments where H has P-symmetry.

Noncommutative/C*-algebraic treatment of semimetals?
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