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Overview

Gapped phases, e.g. topological insulators, can be classified by
bundle invariants → noncommutative/twisted/equivariant
(KR)-cohomology invariants. Experiments: late 2000s.

Topological Weyl semimetals were experimentally realised in
2015/16, and advertised as the elusive “Weyl fermion”. General
mathematical characterisation still lacking.

[M+T, arXiv:1607.02242] Globally, topological semimetals realise
invariants of “singular” bundles, connection to insulators is an
extension problem. Tools: MV-principles, generalised degree
theory, gerbes, Clifford modules. . .
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Relativistic fermions and Clifford algebra

Convention. Clr ,s is real Clifford algebra, anticommuting
e1, . . . , er squaring to −1 and er+1, . . . , es squaring to +1.
Cln is complex Clifford algebra on n generators.

Elementary particles ↔ unitary irreps of Poincaré group. Solutions
to relativistic wave eqn provide examples, and can be built from

irreps of SL(2,C) ∼= Spin(3, 1)
2 to 1−−−→ SO0(3, 1).

Spin(3, 1) ⊂ Cl+3,1 ⊂ Cl4 and Cl4 ∼= M4(C) has a unique irrep on

S ∼= C4 (Dirac spinor). Clifford multiplication is implemented by
the 4× 4 gamma matrices γµ satisfying γµγν + γνγµ = 2gµν .

The chirality element γ5 := iγ0γ1γ2γ3 commutes with Spin(3, 1),
decomposing S = SL ⊕ SR , ψ = (ψL, ψR) according to its
±1-eigenspaces. The spin irreps SL/R are the two-component
left/right handed Weyl spinors.
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Relativistic Dirac and Weyl equations

Massive Dirac equation is (/D −m)ψ = 0 where /D = iγµ∂µ is the
Dirac operator. When m = 0, the massless Dirac equation
decouples into two independent Weyl equations

/DLψL = 0, /DRψR = 0,

where /DL/R := i∂0 ∓ i

3∑
i=1

σi∂i︸ ︷︷ ︸
Weyl Hamiltonian

and σi are the Pauli matrices.

Fourier transform i∂µ 7→ pµ turns the Weyl Hamiltonians into

HL/R(~p) = ±piσi ∈ M2(C), ~p = (p1, p2, p3) ∈ R̂3.
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Weyl Hamiltonian dispersion
Eigenvalues of HL/R(~p) are E (~p) = ±|~p| ⇒ linear dispersion.
Degenerate zero-energy mode at |~p| = 0. Symmetry of the
spectrum — particle/antiparticle pairs.

Condensed matter “Weyl fermions” come from H which look locally like
HL/R . Important differences: (1) quasi-momentum k ∈ T3 rather than

~p ∈ R̂3, (2) non-isotropic dispersion, (3) Weyl charges annihilate instead
of forming a Dirac spinor.

5 / 28



Condensed matter Weyl fermion

Electron motion in a crystalline material is described by a
Zd -invariant Hamiltonian H acting on L2(Rd). Brillouin zone of
quasi-momenta in solid-state physics is topologically the

Pontryagin dual torus Td = Ẑd .

Bloch–Floquet transform turns H into a (smooth/cts) family of of
Bloch Hamiltonians H(k) on a Hilbert bundle whose fibre at
k ∈ Td comprises the k-quasiperiodic Bloch wavefunctions.

One generally studies the restriction of H(k) to a finite-rank
low-energy subbundle S (or uses tight-binding model).

We’re interested in (smooth/cts) families of finite-dimensional
Hamiltonians. Could be Bloch, or just some parametrised family.
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Bloch Hamiltonians

Spec(H) form energy bands, EFermi ⇒ insulator/metal/semimetal (L to
R). Energy dispersion near a two-band crossing looks linear, so the
quasiparticle excitations ∼ Weyl fermions (allegedly).

Insulators: Fermi proj. onto E < EFermi defines a valence subbundle
EF ⊂ S (in a bundle category determined by symmetries).
Semimetals: EF only defined on complement of crossings W .
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Semi-metal or insulator?

Can a semi-metal can be perturbed into an insulator?

This is not simply a matter of modifying the spectrum E (k). In
fact, there are local and global topological obstructions to
modifying H(k) in order to “open a gap”, so semimetal band
structures can be very robust!
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Basic two-band Weyl semimetal in 3D — Sketch
2× 2 traceless H(k) = h(k) · σ ≡

∑3
i=1 hi (k)σi for some vector

field h over T3, with spectrum ±|h(k)|. Bands cross precisely at
zeroes of h, generically a set W of isolated Weyl points.

On T3 \W , valence line bundle EF is well-defined. Restricted to a small
2-sphere S2

wi
surrounding wi ∈W , its Chern class in H2(S2

wi
,Z) ∼= Z is

equal to the local index of h at wi (deg. of ĥ ≡ h
|h| : S2

wi
→ S2 ⊂ R3).
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Weyl semimetal in 3D and Fermi arcs
Globally,

∑
i Ind(wi ) = 0 by Poincaré–Hopf. Weyl points come in

pairs with local index ±1. Experimental signature is a “Fermi arc”
connecting Weyl points, and was found in 2015/16.

(L) S.-Y. Xu et al, Discovery of a Weyl Fermion semimetal and topological Fermi arcs, Science 349 613 (2015);
(R) [—] Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nature Phys. 11 748 (2015).
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Abstract semimetal

H(k) = h(k) · σ is a local, basis-dependent expression. More
generally, the Bloch bundle S is a complex Hermitian U(2)-bundle
over a compact 3-manifold T (of momenta).

Bundle of traceless Hermitian endomorphisms of S is a real
oriented rank-3 bundle F with metric g(H1,H2) = 1

2 tr(H1H2).
Structure group is PU(2) = SO(3) under adjoint action, liftable to
Spinc(3) = U(2).

S is a Clifford module bundle for Cliff(F , g). Thus an orthonormal
frame {e1, e2, e3} of F is quantized to a set of Pauli operators
{σ1, σ2, σ3}. Similarly, a section h ∈ Γ(F) is quantized to c(h),
which on S looks locally like c(h)(k) = h(k) · σ.

11 / 28



Abstract semimetal

The square of h in the Clifford algebra is its length-squared, so
Spec(c(h)) = ±|h| in any Clifford module bundle such as S, e.g.
can twist S by some line bundles. The local Weyl charge
information is in h and its zeroes.

This abstraction is useful for constructing and analysing
generalizations of “Dirac-type Hamiltonians” in higher dimensions,
which condensed matter physicists are quite fond of.

Furthermore, the (real) representation theory of Clifford algebras
can already suggest which antiunitary symmetries (time-reversal /
particle-hole) could be present; reciprocally, such symmetries can
isolate the Dirac-type Hamiltonians as the compatible ones1

1E.g. traceless 2× 2 Hamiltonians are precisely particle-hole symmetric ones.
12 / 28



Semimetal → insulator extension problem

The local charge at H2(S2
wi
,Z) ∼= Z measures the obstruction to

opening a gap at wi . These are “monopoles of Berry curvature”
for the line bundle EF .

These local obstructions are not independent — globally there is
an extension problem for EF , from T3 \W to all of T3. This global
obstruction to “opening up all the crossings” (semimetal →
insulator) is captured by a Mayer–Vietoris sequence.

Notation: write T for T3, and W =
∐

i Wi ⊂ T . Its tubular
neighbourhood is DW =

∐
i Dwi , whose boundary is a bunch of

2-spheres SW =
∐

i SWi
.
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Mayer–Vietoris principle
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Mayer–Vietoris principle

Apply MV to the cover T = (T \W ) ∪ DW , whose intersection is
SW . Possibly singular line bundles ↔ H2(T \W ,Z):

· · · 0→ H2(T )︸ ︷︷ ︸
insulators

restr.−−−→ H2(T \W )︸ ︷︷ ︸
insulator/semimetal

restr.−−−→ H2(SW )︸ ︷︷ ︸
local charges

Σ−→ H3(T )→ 0

I Exactness ⇒ Σ local charges of a candidate semimetal in
H2(T \W ) must cancel.

I A candidate semimetal which comes from H2(T ) can be
gapped into an insulator (EF extends across W ). Exactness
⇒ insulators contribute no local charge.

I Need ≥ 2 points in W so that H2(T \W ) contains elements
which don’t come from H2(T ) — “topological semimetal”.
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Gerbes from semimetals — sketch

Gerbes had been used [Gawedzki ’15] to study topological
insulators. They also appear in semimetals:

Let w be a (Weyl) point in T . Cover T with the complement
U1 = T \ {w}, and neighbourhood U0 = Dw

∼= R3 of w . Then
U0 ∩ U1

∼= S2 × R ∼h Sw = S2. Take the line bundle
L01 → U0 ∩ U1 pulled back from the generator of H2(S2

w ,Z). The
corresponding gerbe generates H3(T ,Z) = Z.

The “semimetal gerbe” has at least two Weyl points and is trivial.

In higher d , a semimetal has a codim-3 “Weyl submanifold”
W =

∐
Wi . For the corresponding gerbe, each Wi contributes to

H3(T ,Z) the Poincaré dual of Wi , and these must sum to zero.
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Insulator bulk-boundary correspondence – Heuristics

For insulators, non-trivial EF is detected through metallic
behaviour at the material boundary. Heuristic: interpolating EF to
vacuum requires violation of the insulating condition on the
boundary. Furthermore, the boundary states inherits some
topological data from the bulk.

Example: 2D Quantum Hall Effect is characterised by a Chern
number. Boundary states are chiral with quantised conductivity.

Mathematically, there is a push-forward under the map π which
projects out the direction orthogonal to boundary,

π! : H2(T2)︸ ︷︷ ︸
Invariant for 2D insulator

−→ H1(T1)︸ ︷︷ ︸
1D boundary invariant
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Semimetal bulk-boundary correspondence — Heuristics

For each kx away from

W = {+,−}, EF has a first

Chern number C on the 2D

subtorus in the y -z

direction (blue). C remains

constant as kx is varied,

unless a Weyl point is

traversed, whence C jumps

by an amount equal to the

local charge. Whenever kx
is such that C is non-zero,

a boundary state appears

— these form the (red)

Fermi arc.
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Poincaré duality and boundary Fermi arcs

Let T = T3. Mathematically, the bulk-boundary homomorphism
for semimetals is most conveniently defined via Poincaré
(Lefschetz/Alexander) duality, i.e. H2(T \W ) ∼= H1(T ,W ).

Let π be projection of T onto a 2-subtorus T̃ , and W̃ := π(W ) be
the projected Weyl submanifold. We define π! by the diagram

H2(T \W )

π!

��

∼
PD

// H1(T ,W )

π∗
��

H1(T̃ \ W̃ ) H1(T̃ , W̃ )∼
PDoo

Boundary Fermi arcs are precisely the new relative cycles in
H1(T̃ , W̃ ) compared to the usual torus cycles in H1(T̃ )!
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Fermi arcs are global objects — not simply labelled by local charges at their
end points (clarified in [M+T’16]). E.g. a Dehn twist takes the left config. to

the right config. in the blue box, inducing a non-identity map on H1(T̃ , W̃ ).
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Tunable Fermi arcs

Fermi arcs for model Hamiltonians in [Dwivedi+Ramamurthy,
arXiv:1608:01313] with tuning parameter ϕ. Also [Liu+Fang+Fu,
1604:03947]. Easy to analyse in our framework: horizontal and vertical
configurations are homologous rel W (“rewirable”); arcs differing by
some torus cycle cannot be “rewired” continuously.
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Generalisations to more bands and higher dimensions
Take d = 5, n = 4, so the Bloch Hamiltonians H(k), k ∈ T5 are
4× 4 matrices. Consider Dirac-type Hamiltonians

H(k) = h(k) · γ, {γ i , γj} = 2δij , γi = (γ i )†, i = 1, . . . , 5.

Spectrum of H(k) is ±|h(k)|. Doubly degenerate e-values, which
become 4-fold degen. at zeros of h (generically at points in T5).

A crossing at w is protected by the local index of h,
equal to the degree of ĥ = h

|h| : S4
w → S4 ⊂ R5.

Globally the
∑

i Ind(wi ) = 0 by Poincaré–Hopf.
Generically, dispersion near w is linear looks like that of
4-component massless Dirac fermion with both
particle/antiparticle d.o.f. (red herring).
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Generalisations to more bands and higher dimensions

Dirac-type 4× 4 Hamiltonians H(k) = h(k) · γ in are convenient,
but not generic, and again local, basis-dependent.

Actually, they are distinguished by compatibility with fermionic
T-symmetry2 (quaternionic structure Q). Globally, this is a
reduction of a U(4) Bloch bundle S to a Sp(2) = Spin(5) bundle
(not all U(4) gauge trans. preserve H = h · γ form).

Abstractly, we can consider a rank-5 oriented real vector bundle F
over a compact 5-manifold T , with fibre metric g . A section
h ∈ Γ(F) is quantized to c(h) ∈ Cliff(F , g).

2Actually a TP symmetry.
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Higher n, d generalisations

On a spinor bundle S (or any Clifford module bundle), the analysis
of the Spec(c(h)) is the same as before. In particular, a four-band
crossing at w is protected by the local index of h at w .

Away from W , there is a rank-2 valence subbundle EF , which is
really a quaternionic line bundle. We can regard ĥ (locally) as a
map to S4 ∼ HP1 (c.f. S2 ∼ CP1 in the two-band case).

There is again an extension problem of EF from T \W to T . In
d = 5, quaternionic line bundles are stable, and we can use the
MV-sequence in K̃Sp to study the semi-metal → insulator problem.
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γ-quadratic Hamiltonians

In a spinor bundle, a ∧ b determines the concrete Hamiltonian
Ha,b(k) := i

2 (a(k) ∧ b(k))I γ
I , where I is a 2-multi-index.

Spec(Ha,b(k)) = ±|a ∧ b|(k) — two-fold degenerate eigenvalues
becoming 4-fold degenerate at zeroes of a ∧ b. Looks identical to
γ-linear case, but as we will see, topological protection of crossings
is very different!

In fact, we can easily find the spectrum of the general
c(a ∧ b + c ∧ d ) = Ha,b + Hc,d . Writing λ = |a ∧ b|, µ = |c ∧ d |,
the spectrum is ±(λ± µ).
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Spectrum of γ-quadratic Hamiltonians. We are interested in 4-band
crossings, which occur at λ = µ = 0, and whether they can be gapped.
Might as well take µ→ 0.
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γ-quadratic Hamiltonians

[E. Thomas ’67] There is a subtle local index for vector 2-fields
a,b over a 5-manifold, for points where a ∧ b = 0 (linearly
dependent), and an analogue of Poincaré–Hopf. This invariant is
given by the homotopy class of the map (â, b̂) : S4

w → V5,2 (Stiefel
manifold), and π4(V5,2) ∼= Z2.

Recall the fibration S3 = V4,1 → V5,2 → V5,1 = S4, where the S4

base parametrises the choice of e1, and the fiber parametrises the
choice of e2 orthonormal to e1. π4(V5,2) = Z2 comes from the
famous π4(S3) = Z2.

This suggests a subtle topological Z2-semimetallic phase.
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Summary + Outlook

Abstracted semimetal topological invariant in Clifford algebraic
language, paving the way for generalizations to semimetallic
“Dirac-type Hamiltonians”.

Analysed semimetal/insulator relationship globally, as an extension
problem, using MV.

Identified Fermi arc topological invariant, whence the problem of
“tuning/rewiring” Fermi arcs is easy to analyse.

Point symmetries such as P imposes an equivariance condition on
vector fields h (whose quantizations are Dirac-type Hamiltonians).
An equivariant index captures local gap-opening obstructions —
relevant in experiments where H has P-symmetry.

Noncommutative/C ∗-algebraic treatment of semimetals?
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