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The infinite wedge space

Let V' be a linear space with basis {k},cz, 1
A semi-infinite monomial vs is an expression of the form
Vs =S1 ANSp ASs3 N -e
where the s; € Z + % si>sip1and s; —sipp =1 for i > 1.
We say that vs has charge c if

s,-:cfiJr% fori>1

Examples:
1 3 5 7 9 _
“2NTENTINATE AN c=0
7 3 1 3 5 _
2NN TFN TN TGN c=2
and
5 1 7 9 11 _
N3N AT N A c=-1



The infinite wedge space (or fermionic Fock space) A% V is the linear
space with basis {vs}, equipped with an inner product for which this
basis is orthonormal.

The wedging operator ), k € Z + 3 is defined by
P ATV 5 ATV, frskNF

Together with its adjoint, the contraction operator v} (which
“sign-removes k'), this yields the anti-commutation relations of the
infinite Clifford algebra:

{07} = bu, {0} = {vi, v} =0
Obviously,

vs¢ ifkes$

0 otherwise 0 otherwise

P { Vitu(vs) = {VS TRES



Using the free fermions 1, and 1)} one can further define the free bosons

an= Y Untj neZ\{0}

keZ+1
with Heisenberg commutation relations
[avn, am] = ndp —m
and adjoint a} = a_,,.
Finally we use these to define the vertex operators

F(z) =exp <Z ZT: aj:n)

n>1



The infinite wedge space A% V is a direct sum of charge-c subspaces
NV =@ (),
cEZ

The semi-infinite monomials spanning each subspace are in one-to-one
correspondence with integer partitions: If

Vszﬂ/\sl/\sé/\...
has charge c then the partition corresponding to vs is

A= (A, A2,...) where N\ =s+i—c—3

Examples:
c=0 —IA=3A=-3A-IAn-2A A=0
c=2 IANZA—FA=3A=3A A=(2,1)
and
c=-1 EA=IA-IA-3A-UA A= (3,2)



For ¢ = 0 Okounkov introduced the following graphical description
obtained by rotating a partition, such as

(8,5,4,2,2,1) = |

by 135° to get
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Using partitions to represent the charge-0 semi-infinite monomials and
adopting “bra” and "ket” notation, for n > 1 the operators a_, and «,
act on |\) by adding/deleting border strips of length n, weighted by the
factor (—1)"*1 where h is the height of the border strip.

o R B o

(2,1,1) (5,1,1) (3,3,1) (2,1,1,1,1)

a_3)(2,1,1)) =(5,1,1)) — |(3,3,1)) + |(2,1,1,1,1))



Accordingly, the vertex operators ' (z) satisfy

r—(2)|lp) = Z ZA7HN) and To(2)|A) = Z ZP=al )

A= pn=A

where a pair of partitions A, i1 is interlacing, denoted as A\ > p, if

ALZ 12 A= >

L[]

(8,5,2,1) = (5,3,1,1)



Schur functions

The Schur functions sy(x1, X2, ..., x,) are the characters of the
irreducible polynomial representations of GL(n, C) of highest weight .

For A, uu partitions such that p C A, the skew Schur function sy, (x) may
be computed combinatorially as

Sy/u(x) = Zx

where the sum is over semi-standard Young tableaux on {1,2,3,...,n}
of skew shape A\/p.

For example

1] 2] 2] 1]

+ +

12 22 1]

2 .2 2.2
= xyx(x{ + Xx5) + 2x7%

‘ ”

53,2,2)/(2,1) (X1, x2) “ =

[a—y
—_

N
N
N




Since a semi-standard Young tableaux of shape A\/p on {1,2,...,n} isin
one-to-one correspondence with sequences of interlacing partitions

M:/\(O)_<)\(1)_<)\(2)_<....<)\(”):)\

1] | - 9= =
: A = (3,2, 1)
12 o
o A2 =(3,2,2) =\
(2,1)=(3,2,1) (3,2,1)<(3,2,2)
we have
SA/u(X) = Z Xl\,\(1>,,\(01|X2|,\<2),>\(1)| - .Xrll/\@)_/\(nfl)‘
A0 \@ 4 M
A=
AM=x
Hence

<A’ [T o)) = <u’ TTr+Ca)|A

i>1 i>1

> = Sy/u(x1,x2,...)



3-dimensional partitions

A plane partition or 3-dimensional partition is a two-dimensional array of
nonnegative integers such that the numbers are weakly decreasing from
left to right and from top to bottom, and such that finitely many
numbers are positive.

Geometrically, a plane partition may also be thought of as a configuration
of stacked unit cubes, such that ...

For example,

3[3]2]1]
211
1 and

‘I—\‘l\)ww#

represent the same plane partition of 26.



A famous result of MacMahon is the following closed-form formula for
the generating function of plane partitions

Z g™l =

1
o=y

n>1

where |7 is the number of unit cubes in 7.

Okounkov and Reshetikhin showed

that the above formula follows as a

straightforward application of the vertex operators [ (z).



Given a plane partition

N
[

=N oT
=N W
—

we can read off its sequence of diagonal slices to obtain a sequence of
interlacing partitions

0<(1)=<(2,1)=<(41)=<(5,2,1)=3,1)=(2)=(1) =0




Each partition X in the sequence of diagonal slices contributes gl*! to the
weight g™ of 7. For this we need the operator

Q) = g™N)
which g-commutes with the vertex operators I (z):

Fi(z) Q = Qri(zq™)

Putting this all together yields

S o= (o [[ - T[(r-me)o)
- (- (1/w) =

1
= H (]__qn)n

n>1

1

T=zjw M (z)(1/w)



In their work on the limit shape of 3-
d partitions, Okounkov, Reshetikhin and
Vafa introduced the following model for
3-d partitions:

A
p=(3,1) N, =16
v=3,1,1) N;=16

P()‘vﬂau) = lim q_NII/\‘_NﬂMl_NaIVl’DN1,N2,N3()‘7:uvV)

N1,N2,N3*>OO



Okounkov, Reshetikhin and Vafa first let N3 — oo and then again read
off the sequence of diagonal slices, now of the form

N <=

with possible shapes of the slices determined by the choice of v.
Using the vertex operator formalism, they then show that

g ")) (o)
Hn}l(l - qn)n
< 5,(0°) Y a sy (@ )50 (a 7 )
n

where n(A) =3, (i —1)A;, p=(0,1,2,...) and

P\ p,v) =

f(qf/\er) _ /:(qf>\1+07 qf>\z+17 q7A3+2, o )

For A = u = v = 0 this simplifies to MacMahon's formula.



The Nekrasov—Okounkov formula

The topological vertex Cy,,(q) was introduced by Aganagic, Klemm,
Marino and Vafa to compute Gromov—-Witten and Donaldson—Thomas
invariants of toric Calabi—Yau threefolds. It may be expressed in terms of
skew Schur functions as

n(X)=n(\)+n()=n(")+5 (IA1+ ]+ v])

X Su'(qp) Z q_ws)\’/n (q_yﬂ))sﬂ/n (q_ul+p)
n

C)\Mu(q) =4q

Comparing this with the Okounkov—Reshetikhin—Vafa formula we get

Couw(q) = q”(>\)+"(u)+"(l’)+%(|/\\+|M|+|V\)P()\’ 1, 1) H(l —q")"

n>1

Since P(\, p,v) clearly is cyclically symmetric, we may infer that

Ckuu(q) = C;w)\(q) = Cw\u(q)




The hook-length h(s) of a square s € A is the number of squares
immediately to the right and below s, including s itself. For example, the
square s = (3,2) =l in (8,7,7,6,4,3,1) has hook-length 9.

EEEEEN

Using the cyclic symmetry of the topological vertex to compute the sum

ZT|)\| P‘l IMIC())\ (g )CO)\’,u’(q)

in two different ways yields

(1- uq )(1— utgh®)
[Al
Z T H h(s))

SEX
- H (1 _ uqr Tk)r(l _ u—lqr Tk)r
- (]_ _ qrfl Tk)r(]_ _ qr+1 Tk)r

k,r>1



Setting u = g and letting g tend to 1 yields the Nekrasov—Okounkov
formula for an arbitrary power of the Dedekind n-function

[Ta-19""1= ZTWH(l— 5)2> zeC

k>1 SEA




Mixed Hodge polynomials of character varieties

In the following we are interested in the affine variety

M, = {Al, Bi,..., Ag, Bg € GL(H, (C) :
AIBIAT Bt AgBgAL BT = (,l } //GL(n, C)

where g is a nonnegative integer, ¢, a primitive nth-root of unity and //
a GIT quotient.

M, is the twisted character variety of a closed Riemann surface ¥ of
genus g with points the twisted homomorphisms from 71 (X) to GL(n, C)
modulo conjugation. It is nonsingular of dimension d, given by

d,=2n(g-1)+2 g=>1

Hausel and Rodriguez-Villegas considered the problem of computing the
Poincaré polynomials

P(Mpit) = bi(M,)t’

with b;j(M,) the Betti numbers of M ,—extending earlier work of
Hitchin (n = 2) and Gothen (n = 3).



M, admits a mixed Hodge structure (in the sense of Deligne) on its
cohomology which is of “diagonal type”. Hence its (mixed) Hodge
polynomial, which is a 3-parameter deformation of the Poincaré
polynomial, is effectively a 2-variable polynomial, H(M,; g, t).

Moreover
P(Mp; t) = HMp; 1, t)
E(Mn; q) = q"H(M,;1/q,-1)

where E(M,,; q) is the E-polynomial of M, counting the number of
points of M, when considered over the finite field I, instead of C.

More generally, Hausel and Rodriguez-Villegas tried to get a handle on

H(M.p; q, t).



We refine the hook-length of a square s € A by defining the arm-length
a(s) and leg-length [(s) as the number of squares immediately to the
right respectively below s, excluding s itself.

Hence h(s) = a(s) + /(s) + 1.

For example, the square s = (3,3) =l in (8,7,7,6,4,3,1) has
arm-length 4 and leg-length 3.

HEEEN



Defining the function H,(u, q,t) = H,(u,q, t; g) by

Z TIA(1=g)(2n(A)+IA]) H
A

SEA

((1 _ uqa(s)+1tl(s))(1 _ uflqa(s) tl(s)Jrl))g
(]_ _ qa(s)+1 tl(s))(]_ _ qa(s) tl(s)+1)

= EXP<Z(1[—I—,,(:)’(C1??T11))

n>1

where Exp is a plethystic exponential; if
flu,q.t;T) = Zc,,(u, q,t)T"

n>1

then

Exp (f(u,q.t; T)) = exp <Z f(uth))

n
n>1
Example

co(i2)-TT

n>=1



Conjecture. (Hausel, Rodriguez-Villegas)
The mixed Hodge polynomial of M, is given by

H(Mpi g, t) = (¢"2t)" Hy(—t 71, qt?, q)

In the genus-0 case M, consists of a single point for n =1 and has no
points for n > 1. Hence H(M,; q,t) = 6,1 which is consistent with the
conjecture.

Theorem. (Rains=SOW, Carlsson—Rodriguez-Villegas (2016))
The conjecture holds for genus g = 1.




Proof.

The following g, t-analogue of the Nekrasov—Okounkov formula holds:

Theorem.

Tl)\\ 1 _ uqa(s)+1 I(s ))(1 o u—l a(s)tl(s) 1)
Z 1;{ +1tl(s))(1 —q° a(s) ¢(s )+1)
s
H (1 - uq WAT(1 - u g TH)
I 14— lTk)(l _ qlt_]Tk)

ij,k>1

This may either be proved using Macdonald polynomial theory or the
equivariant Dijkgraaf~-Moore—-Verlinde-Verlinde (DMVV) formula for the
Hilbert scheme of n points in the plane, (C2)"], due to Waelder.



Let (u1, up) be the equivariant parameters of the natural torus action on
(C?)I" and set g := e=2™ and t := e2™2. Let Ell ((C2)["]; u,p,q, t) be
the equivariant elliptic genus of (C?)["], where p := exp(2rir) and

u = exp(2rwiz) for 7 € H and z € C. According to the equivariant
DMVV formula:

S TEI((C)u,p,q,t)

n=>0
1
_ H H H 1 _ pm Tkulqnl tng)c(km,l,nl,ng)

m>0k>1¢ nl,n2€Z

The integers c(m, ¢, ny, ny) are determined by the equivariant elliptic
genus of C? given by

0(ug; p)f(u~'t; p)
0(q; p)o(t: p)

:Z Z c(m, €, ny, no)pmutqm™t"

m>=0 £,n1,m€EZ

0(u;p) = > (—u)*pl)

EN(C?,u,p,q,t) =

where



Li, Liu and Zhou obtained an explicit formula in terms of arm- and
leg-lengths for the generating function (over n) of elliptic genera of the
framed moduli spaces M(r, n) of torsion-free sheaves on P2 of rank r and
Cy = n.

Since M(1, n) coincides with (C?)["] this implies

S TEI((C)u,p,q,t)
n=0
B Z T\>\| H t(s). p)e(u—l a(s) t/(5)+1 P)
a(s)+1tl(s ,P)e( a(s) tl(s)+1 P)

SEX

This gives the elliptic Nekrasov—Okounkov formula

ZTl)\I H e(uqa(s)+1t/(s) p)@(ufl a(s) ¢/(s)+1 P)

o Q(qa(s +1¢l(s)- p)g( a(s) ¢l(s +1,P)

1
= H H ]._.[ _ pmTkuéqnltng)c(km,l,nl,ng)

m>0k>1¢ nl,n2EZ




