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A general mathematical framework is presented for modelling the pulling of optical glass
fibres in a draw tower. The only modelling assumption is that the fibres are slender;
cross sections along the fibre can have general shape, including the possibility of multiple
holes or channels. A key result is to demonstrate how a so-called reduced time variable
τ serves as a natural parameter in describing how an axial stretching problem interacts
with the evolution of a general surface-tension-driven transverse flow via a single impor-
tant function of τ , herein denoted by H(τ), derived from the total rescaled cross-plane
perimeter. Another important result is that the model gives the final fibre geometry from
the draw ratio and the physical surface tension and fibre tension, without reference to
the temperature of the glass or the length of the neck-down region. Of principal practical
interest in applications is the “inverse problem” of determining the initial cross-sectional
geometry, and experimental draw parameters, necessary to draw a desired final cross
section. Two case studies involving annular tubes are presented in detail: one involves
a cross section comprising an annular concatenation of sintering near-circular discs, the
cross section of the other is a concentric annulus. These two examples allow us to exem-
plify and explore two features of the general inverse problem. One is the question of the
uniqueness of solutions for a given set of experimental parameters, the other concerns
the inherent ill-posedness of the inverse problem. Based on these examples we also give
an experimental validation of the general model and discuss some experimental matters,
such as buckling and stability. The ramifications for modelling the drawing of fibres with
more complicated geometries, and multiple channels, are discussed.

1. Introduction

Microstructured optical fibres (MOFs) have revolutionised optical fibre technology,
promising a virtually limitless range of fibre designs for a wide range of applications
(Knight 2003; Monro and Ebendorff-Heidepriem 2006). An array of air channels running
along the length of a fibre, with diameters comparable to the wavelength of light, provide
the necessary spatial change in the refractive index to guide light along the core. These
fibres are fabricated as depicted in figure 1; a preform (1–3 cm diameter and with a length
measured in tens of centimetres) with appropriate geometry is fed into a heated region at
a feed speed U0 and pulled at a higher speed UL by winding onto a spool some distance
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Figure 1. Drawing of a viscous fluid fibre. At x = 0 the cross-sectional geometry is prescribed
and has area S0, while the fluid “feed speed” is U0; at x = L the fluid velocity, or “draw speed”,
is UL > U0. We suppose that for x > L there is no more axial stretching or change in the
cross-sectional geometry.

downstream beyond the neck-down region, comparable to but not necessarily identical
with the heated region. Internal channels may be pressurised. The resulting fibre may
have a diameter of less than a millimetre and a length of a kilometre or more, while the
internal air channels have micro or even nano-scale diameters. From the start to the end
of the neck-down region, this fibre drawing process modifies both the scale and shape of
the cross-sectional geometry, so that achieving a desired fibre design is non-trivial, since
the required preform geometry is not just the fibre geometry at a larger scale.
In this paper we describe a mathematical model for the drawing of MOFs, assuming

that inertial effects are negligible and that there is no pressurisation of internal chan-
nels. The model may be solved, given an initial preform geometry and appropriate draw
parameters, to give the final fibre geometry — the “forward problem”. In principle, the
model can also be used to determine a preform geometry and draw parameters that
will yield a desired fibre design — the “inverse problem”. Solution of both forward and
inverse problems will be demonstrated for tubular hollow-core fibres that may not be
axisymmetric, and extension to more general fibre geometries will be discussed. We aim
to improve understanding of the parameters that control the practical achievability of
a desired air-solid geometrical structure in the final fibre. The model has application
to drawing of all preforms, extruded, drilled and comprised of an assembly of stacked
capillary tubes (Monro and Ebendorff-Heidepriem 2006).
Modelling of fibre drawing was first motivated by the spinning of synthetic fibres for

textiles and an early detailed one-dimensional model for this, obtained by an asymptotic
expansion in terms of the small aspect ratio of the fibre, was presented by Matovich and
Pearson (1969). This model was derived in an Eulerian reference frame, in which fibre
drawing is a steady-state problem. Yarin et al. (1994) and Fitt et al. (2002), motivated
by the drawing of optical fibres derived Eulerian one-dimensional models for drawing of
circular tubes and made some progress in quantifying the effects of inertia, gravity and
surface tension. However, of particular relevance here, they did not obtain a complete
exact solution for the case of drawing a circular-tube fibre with neglect of internal hole
pressurisation, gravity, inertia and temperature variation.
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Lagrangian coordinate systems have, quite commonly, been used for models of exten-
sional flows; see, for example, Wilson (1988), Kaye (1990), Yarin (1993), and Stokes et al.
(2000). Our work here builds directly on the work of DeWynne et al. (1994), Cummings
and Howell (1999) and Griffiths and Howell (2007, 2008), all of whom used an asymptotic
approach and a Lagrangian reference frame, following a cross section through the neck-
down region. In this reference frame fibre drawing is an unsteady problem. A detailed
derivation of the equations governing the evolution of a non-axisymmetric slender New-
tonian fibre, containing no holes in the cross section, in the case where surface tension has
negligible effect, was given in DeWynne et al. (1994). There it was shown that, to leading
order, in the Lagrangian reference frame travelling with a cross section from x = 0 to
x = L (see figure 1), the cross section changes in size but otherwise retains its initial
shape. (It is usual to assume that the neck-down length L is well approximated by the
length of the heated zone of the draw tower.) Cummings and Howell (1999) considered
the case where surface tension is non-negligible and the cross section (which contains
no holes) undergoes changes in size and shape. They showed, again using a Lagrangian
reference frame and, importantly, a particular reduced time variable τ , that the evolu-
tion of the shape of the cross section reduces to a classical 2D Stokes flow free-boundary
problem driven by unit surface tension, which we shall refer to as the transverse-flow

problem, and that this is coupled to a 1D axial-stretching problem, which determines the
size of the cross section over time; the coupling of the 2D and 1D models is through
the total length of the cross-sectional perimeter boundary as a function of reduced time.
Cummings and Howell (1999) do not describe their implementation of the coupling in any
detail. Griffiths and Howell (2007, 2008) built on this approach when they considered the
cross-sectional shape of slender thin-walled viscous tubes, subject to deformations due to
both stretching and surface tension. They used the Lagrangian reference frame and the
reduced time variable τ introduced by Cummings and Howell (1999) for the transverse-
flow problem, and the Eulerian reference frame for the axial-stretching problem, and,
for isothermal conditions, obtained an explicit asymptotic solution for a general initial
cross-sectional shape in the slow flow limit (when inertial effects are negligible). This is
a remarkable result.

In this paper we show that the result of Griffiths and Howell (2007, 2008) is a very
special case of a much more general mathematical structure that exists for the fibre
drawing problem. Our main result is to show that it is possible to obtain explicit solutions
to the fibre drawing problem for arbitrary cross-plane profiles, without the success of
the formulation relying on any special assumptions about the cross-plane geometry. By
writing and solving the axial-stretching problem, as well as the transverse-flow problem,
in the Lagrangian reference frame, with the reduced time τ as the independent variable,
we find that the solution to the axial-stretching problem can be written explicitly for any
cross-sectional geometry in terms of the single function

H(τ) = exp

(

− 1

12

∫ τ

0

Γ̃(τ ′) dτ ′
)

, (1.1)

where Γ̃ is the dimensionless cross-sectional perimeter calculated from a suitably rescaled
transverse flow problem. From knowledge of this function H(τ), it turns out that the
Eulerian axial coordinate x, the axial velocity u, and the cross-sectional area S are all
given by explicit formulas with τ serving as the natural parameter. For example, in the
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constant viscosity (isothermal) case we find

S(τ) =
1

H(τ)2

(

1− σ

γ

∫ τ

0

H(τ ′) dτ ′
)2

, (1.2a)

u(τ) =
1

S(τ)
, (1.2b)

x(τ) = − 1

σ
log
(

H(τ)
√

S(τ)
)

. (1.2c)

Here, γ is the scaled surface tension and σ is the scaled tension in the fibre, which we
call the fibre tension. It is seen that the coupling between the transverse-flow problem
and the axial-stretching problem is solely through the function H(τ) and so that function
completely determines the three-dimensional fibre geometry. A viscosity that depends on
axial position can also be handled by appropriate scaling, as will be shown.

Linear stability analyses of the isothermal drawing of circular-rod and circular-tube
fibres has shown that draw-resonance instability occurs at a constant draw ratio in excess
of a little more than 20 (Pearson and Matovich 1969; Fitt et al. 2002; Yarin et al. 1994)
and this has been experimentally confirmed (Denn 1980). Nevertheless, in practical fibre
drawing, where there is control of the fibre tension and an axial temperature gradient,
fibres with simple through to complex structure are drawn at large draw ratios up to
10000, so that control of fibre tension, cooling of the fibre and, perhaps, other factors
appear to have a stabilising effect (Pearson and Matovich 1969; Gospodinov and Yarin
1997; Scheid et al. 2010). Therefore, although the occurrence of draw resonance at draw
ratios in excess of 20 cannot be precluded, we leave this matter for future investigation
and here allow draw ratios well in excess of the upper limit suggested by linear-stability
theory. However, if the fibre tension is negative, i.e. a compressive force, buckling of the
fibre is to be expected (Tchavdarov et al. 1993), so that we shall restrict attention to a
positive fibre tension (σ > 0).

The structure of this paper is as follows. The Lagrangian model, for both axial-
stretching and transverse-flow problems, is first described in section 2 and the balance
between fibre tension and surface tension needed to draw a fibre is discussed. Here we also
extend the work of Chen and Birks (2013) and show that, when fibre tension is known,
temperature information is not needed to determine the final fibre geometry. Then, in
sections 3 and 4 we present two carefully chosen case studies to show the mathemati-
cal framework in action. The case study of section 3 involves a cross section comprising
an annular concatenation of sintering near-circular discs, and demonstrates the general
applicability and power of our model formulation. The cross section of the second case
study in section 4 is a concentric annulus. This second case study is presented in some
detail since it affords us the opportunity to discuss ideas about the so-called “forward”
and “inverse” problems of fibre drawing. Also, because it is a relatively simple solution
which can be written down explicitly, the concentric annulus yields information that is
difficult to obtain for fibres of other geometries. Even more, existing order-of-magnitude
experimental data for drawing of circular tubes allows a rudimentary validation of our
model; a more detailed experimental validation is in progress and will be presented else-
where. A comparison of results for the two case studies turns out to be very instructive
in relation to the questions of the uniqueness of solutions to the inverse problem and its
inherent ill-posedness, and these matters are considered in sections 5 and 6. We conclude
the paper with a more general discussion of how our results contribute to the challenging
problem of solving the inverse problem for fibres having cross-sectional domains of higher
connectivity.
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Parameter Symbol Approx. value Units

Surface tension γ 0.2− 0.3 Nm−1

Viscosity µ0 105 − 106 Pa s
Density ρ 2500 − 6000 kgm−3

Neck-down length L 0.04 m
Feed speed U0 2.3× 10−5 ms−1

Draw ratio D 103 − 104

Preform external radius Rp 5× 10−3 m
Preform cross-sectional area S0 5× 10−5 − 8× 10−5 m2

Table 1. Typical fibre-drawing parameters

2. The mathematical model

As shown by DeWynne et al. (1994) and Cummings and Howell (1999), the slenderness
of the fibre may be exploited to reduce the full three-dimensional Navier-Stokes model
to coupled models for (1) the stretching flow along the axis of the fibre and (2) the
transverse flow in the cross-sectional plane. For ease of reading, we here give a summary
of the derivation of these models.
Let the x-axis be directed along the axis of the fibre, in the direction of elongation,

and let y and z be the coordinates in the cross-sectional plane. We denote the velocity
vector and pressure by u = (u, v, w) and p, respectively, while S(x) and Γ(x) are the
cross-sectional area and perimeter length at position x. The boundary conditions are,
u = U0, S = S0 at x = 0, and u = UL at x = L. The draw ratio is defined to be
D = UL/U0 and, typically in fibre drawing, D > 1. Table 1 shows typical parameter
values for fibre drawing. The variables are scaled as follows, where asterisks denote the
scaled quantities and ǫ =

√
S0/L is assumed to be small (from Table 1, ǫ 6 0.25):

(x, y, z) = L(x∗, ǫy∗, ǫz∗), t =
L

U0

t∗, (2.1a)

(u, v, w) = U0(u
∗, ǫv∗, ǫw∗), S = S0S

∗, Γ = ǫLΓ∗. (2.1b)

Like Griffiths and Howell (2008), we allow that the fluid viscosity µ may vary with axial
position:

µ = µ0µ
∗(x), (2.2)

where µ0 is a typical viscosity value. However, in any cross section of the fibre the viscosity
is assumed to be constant. Yarin et al. (1989), Griffiths and Howell (2008) and, more
recently, Taroni et al. (2013) considered a viscosity that depended on temperature and
included a 1D energy conservation equation to solve for the temperature as a function
of axial position. Here we shall assume the viscosity to be a known function of axial
position so that no energy-conservation model is required. Following the derivation of
our model we will discuss this assumption and show that the final fibre geometry may be
determined from the fibre tension, without knowledge of the temperature, so generalising
the finding of Chen and Birks (2013) for fibres containing isolated small holes. We also
assume that the surface tension γ is constant and define the scaled surface tension

γ∗ =
γ

µ0U0ǫ
, (2.3)

which, from Table 1, is O(1). Writing the unknown functions as power series of ǫ2, yields,
at leading order, the two coupled models.
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2.1. One-dimensional axial stretching model

The axial flow is governed by one-dimensional mass and momentum conservation equa-
tions for u(x) and S(x) (Cummings and Howell 1999; Griffiths and Howell 2008; Wylie
et al. 2007). Here we neglect gravity. For now we retain the inertial term but will see
later that inertia too may be neglected because of the very small Reynolds number
Re = ρU0L/µ0 = O(10−8) (refer Table 1). Dropping asterisks on scaled variables and
parameters, the equations for conservation of mass and momentum are, respectively,

St + (Su)x = 0, (2.4)

−ReS(ut + uux) + (3µSux)x +
γ

2
Γx = 0. (2.5)

At x = 0 we have S(0) = 1 and u(0) = 1, while at x = 1 we have u(1) = D. Because the
flow in the Eulerian reference frame is steady, we can integrate (2.4) and (2.5), giving

u(x)S(x) = 1, (2.6)

−Reu+ 3µSux +
γ

2
Γ = 6σ. (2.7)

The constant value 6σ is the axial tension in the fibre, scaled with µ0U0S0/L; hereafter,
we shall call σ the (scaled) fibre tension parameter, or simply the fibre tension, as distinct
from the surface tension. Mass conservation (2.6) immediately gives S(1) = 1/D.
Because we shall also use a Lagrangian reference frame in which the flow is unsteady,

we also write the continuity equation (2.4) in the form

DS

Dt
+ Sux = 0, (2.8)

where DS/Dt = ∂S/∂t + u∂S/∂x is the material derivative (following a moving fluid
particle) of S. This allows us to rewrite (2.7) as

−Re

S
− 3µ

DS

Dt
+

γ

2
Γ = 6σ, (2.9)

where we have also substituted u = 1/S. The constant σ is determined using the bound-
ary condition u(1) = D or S(1) = 1/D. For stretching of the fluid fibre so that S(1) < 1,
we require D > 1. The typical range for D is given in Table 1, from which we see that
Re/S 6 ReD = O(10−4), which justifies our neglect of inertia from hereon. Before we
can write σ in terms of D we need to consider the 2D model for the transverse flow,
which determines the perimeter length Γ(x).

2.2. Two-dimensional transverse flow model

The transverse flow in the cross-sectional plane is best found in terms of a Lagrangian
axial coordinate x̃ and with the y and z coordinates in the cross-sectional plane scaled
with

√
S(x̃, t̃) (Cummings and Howell 1999):

t = t̃, x =

∫ t̃

0

u(x̃, T ) dT + x̃, y =
√
Sỹ, z =

√
Sz̃, (2.10a, b, c, d)

where we have assumed no rigid-body translation or rotation of each cross section. We
also transform the pressure and velocity thus,

p = −ux(x̃, t̃) +
γ

√

S(x̃, t̃)
p̃, (2.11a)

v = −1

2
ux(x̃, t̃)y +

γṽ

µ(x̃, t̃)
, w = −1

2
ux(x̃, t̃)z +

γw̃

µ(x̃, t̃)
, (2.11b, c)
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which corresponds to the scalings of Cummings and Howell (1999) excepting that we allow
a spatially varying viscosity and so include the viscosity in the scaling of the velocity
components due to surface tension. The model for the transverse flow, in a reference
frame that moves axially with a cross section of the fibre, is then

ṽỹ + w̃z̃ = 0, (2.12a)

ṽỹỹ + ṽz̃z̃ = p̃ỹ, (2.12b)

w̃ỹỹ + w̃z̃z̃ = p̃z̃, (2.12c)

(µ
√
S/γ)Gt̃ + ṽGỹ + w̃Gz̃ = 0, on G = 0, (2.12d)

Gỹ(−p̃+ 2ṽỹ) +Gz̃(ṽz̃ + w̃ỹ) = −κ̃Gỹ, on G = 0, (2.12e)

Gỹ(ṽz̃ + w̃ỹ) +Gz̃(−p̃+ 2w̃z̃) = −κ̃Gz̃, on G = 0, (2.12f )

where solutions of G = 0 correspond to boundary points of the cross section. By defining
the reduced time τ (Cummings and Howell 1999; Griffiths and Howell 2008),

τ = γ

∫ t̃

0

dt̃

µ
√
S
, (2.13)

the kinematic boundary condition (2.12d) becomes

Gτ + ṽGỹ + w̃Gz̃ = 0 on G = 0, (2.14)

and the transverse flow is given by the solution of a classical Stokes flow free boundary
problem on a domain with unit area and driven by the unit surface tension on the
boundary. (It is common to refer to flows driven purely by the action of surface tension
on their boundaries as viscous “sintering” and we will sometimes use this terminology
as shorthand for the physical mechanism active in the cross-plane). To determine the
change in x(x̃, τ) on a fixed cross section as τ advances it is necessary to solve

∂x

∂τ
=

∂x

∂t̃

dt̃

dτ
=

µu
√
S

γ
=

µ

γ
√
S
. (2.15)

One can solve the 2D transverse flow problem in reduced time τ using any method,
analytical or numerical, that is appropriate for the particular geometry; for example see
van de Vorst and Mattheij (1995) and references therein. In this paper we focus on tubular
fibres with a doubly connected cross section. We study two cases in detail: the case where
the cross section is a concentric annulus and the case where the cross section initially
comprises N > 3 near-circular, just-touching discs of fluid placed symmetrically around
an inner hole. These examples are chosen because the solutions for the free boundary
evolution in the cross-plane in each case happen to admit solutions available in analytical
form. The scaled perimeter length Γ̃(τ) can readily be calculated from such a solution
thus allowing calculation of the perimeter length Γ(τ) =

√
S Γ̃(τ) appearing in (2.9).

2.3. Model coupling

In coupling the 1D axial flow and 2D transverse flow models, Cummings and Howell
(1999) and Griffiths and Howell (2008) work with the 1D axial flow model expressed in
terms of the Eulerian coordinate x. We, instead, write the 1D axial flow model in terms
of the reduced time variable τ which may then be solved for fibres of completely arbitrary
geometry, including fibres with multiple air channels.
Without loss of generality we consider the fluid particle with Lagrangian coordinate

x̃ = 0, i.e. that is at position x = 0 at time τ = t̃ = 0. Neglecting inertia and writing
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(2.9) in terms of the reduced time τ yields

− 3γ√
S

dS

dτ
+

γ

2

√
S Γ̃(τ) = 6σ, (2.16)

and putting χ(τ) =
√

S(τ) reduces (2.16) to a linear ODE for χ:

dχ

dτ
− χ

12
Γ̃(τ) = −σ

γ
. (2.17)

Equation (2.17) is readily solved for τ > 0, subject to the initial condition χ(0) = 1,
using the integrating factor

H(τ) = exp

(

− 1

12

∫ τ

0

Γ̃(τ ′) dτ ′
)

. (2.18)

This function H(τ) is a very important one that almost completely describes the stretch-
ing fibre. We find

χ(τ) =
1

H(τ)

(

1− σ

γ

∫ τ

0

H(τ ′) dτ ′
)

. (2.19)

The relation between the reduced time τ and the physical position of the fluid particle
x is given by (2.15) and, for a known viscosity profile µ(x), 0 6 x 6 1, it is convenient
to use this in the form

1

µ(x)

∂x

∂τ
=

1

γχ
. (2.20)

Then, defining

m(x) =

∫ x

0

1

µ(x′)
dx′, (2.21)

we obtain

m(x) =
1

γ

∫ τ

0

1

χ(τ ′)
dτ ′ =

1

γ

∫ τ

0

H(τ ′)
[

1− (σ/γ)
∫ τ ′

0
H(ξ) dξ

] dτ ′

= − 1

σ
log

(

1− σ

γ

∫ τ

0

H(τ ′)dτ ′
)

(2.22a)

= − 1

σ
log [H(τ)χ(τ)] . (2.22b)

Closed-form integration to evaluate m(x) in (2.21) for a given viscosity profile µ(x) is
sometimes possible: for the special case of constant viscosity µ(x) = 1 then m(x) = x
and we may write

exp(−σx) = H(τ)χ(τ). (2.23)

Finally, we define τL to be the total deformation time during which a cross section travels
from x = 0 to x = 1, so that x(τL) = 1. Then, from (2.22b) and using χ(τL) = 1/

√
D,

σ =
1

M
logQ, Q =

√
D

H(τL)
, (2.24a, b)

where M = m(1), while (2.22a) yields

H(τL)√
D

+
σ

γ

∫ τL

0

H(τ)dτ = 1. (2.25)
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Using (2.24) and defining

P =
γ

∫ τL

0

H(τ)dτ

, (2.26)

(2.25) may be written

1

Q
+

1

MP
logQ = 1. (2.27)

Equation (2.25) shows that the final fibre geometry is determined by the draw ratio D
and the ratio of scaled fibre tension to scaled surface tension. Since the surface tension
scale is µ0U0

√
S0/L (see (2.3)) and the fibre tension scale is µ0U0S0/L (see (2.7)), we

have
σ

γ
=
√

S0

σ∗

γ∗
(2.28)

where we have restored asterisks on the scaled quantities now that physical quantities are
of interest. Given that the physical surface tension is relatively insensitive to temperature
and can be considered as a known quantity, (2.28) gives the physical tension σ required
to draw the fibre determined by a given D and ratio σ∗/γ∗. Conversely, although the
physical fibre tension is governed by the viscosity and therefore the temperature profile
in the glass, as well as the draw ratio, where the physical fibre tension is measured the
model gives the final fibre geometry from the surface and fibre tensions and the draw
ratio, without any reference to the temperature of the glass or the length of the neck-down
region. This result was found by Chen and Birks (2013) for fibres with small, isolated
holes. Here we have found that it is true in general, for any cross-sectional geometry.
Since, in practical fibre drawing, the temperature in the glass and the neck-down length
are not known, while the fibre tension is usually measured, this is a crucial result. If the
fibre geometry throughout the neck-down zone is of interest, then the problem would be
much more difficult because the viscosity (or temperature) profile and the fibre geometry
are interdependent, so that determination of the geometry requires solution of coupled
flow and energy balance models; see, for example, Yarin et al. (1989), Griffiths and Howell
(2008) and Taroni et al. (2013). However, in fibre drawing it is the final geometry that is
of interest so that we have the very important result that for a given preform geometry, a
given draw ratio D and a known physical surface tension γ, the model gives the physical
draw tension required to produce a given target geometry.
We next analyse (2.27). Since P measures the degree of sintering in the cross plane

due to surface tension effects while Q measures the stretching of the fibre due to the
fibre tension then (2.27) governs the balance between surface tension and axial tension
needed to draw a particular fibre from a given preform, quantified by τL. A graph of Q
against MP is shown in figure 2.
In the absence of surface tension so that γ = 0 then τL = 0 implying that H(τL) = 1

and we have Q =
√
D or Mσ = 1

2
logD, and deformation in the cross section is due to

stretching of the fibre alone.
It is interesting that Q = 1 is a solution of (2.27) for any value of MP and this

corresponds to zero fibre tension σ = 0 so that the draw ratio D exactly counterbalances
the axial effect of surface tension. For negligible surface tension D = 1 and there is no
deformation of the fibre geometry, otherwise surface tension is, effectively, responsible for
all deformation, both sintering in the cross-plane and any stretching in the axial direction.
Since H(τL) 6 1 (this follows from its definition (2.18)) then Q = 1 can be a solution only
for D 6 1, a regime that is of little practical interest for fibre drawing, although it may
be of interest for other applications of the model (for example, in preform fabrication).
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Figure 2. The relation between fibre tension measured by Q and surface tension measured by
P . The dashed curve shows the special solution Q = 1 that satisfies (2.27) for any P .

Note also that (2.24) shows that, for non-negligible surface tension for which H(τL) < 1,
we have Q > 1 for H(τL) 6 D 6 1. Thus a draw ratio smaller than unity does not imply
a fibre in compression, a counter-intuitive result that we discuss again in subsection 4.3
in the context of the annular fibre.

It is readily seen from figure 2 that Q > 1 corresponds to MP > 1 while Q < 1
corresponds to MP < 1. The latter implies σ < 0, a negative fibre tension and, hence,
axial compression of the fibre which is, in turn, expected to lead to buckling instability
(Tchavdarov et al. 1993). Therefore, here we will insist on a positive fibre tension, σ > 0
or Q > 1. Also seen from figure 2 is the (exponential) increase in Q with MP , for non-
trivial solutions of (2.27). For some given H(τ) describing the surface tension driven
deformation in the cross section, if τL is reduced while γ is held constant (so that MP
increases) then this must be accompanied by an increase in the stretching rate, or Q, so
that the new value of τL corresponds to x = 1. Alternatively, holding τL constant and
increasing the surface tension γ implies a faster cross-plane evolution in physical time
and, therefore, the need to increase the stretching rate in order to obtain the required
cross-plane profile at x = 1.
Our model involves essentially four parameters: τL, D, σ and γ. It is important to note

that two of these four model parameters can be specified externally with the remaining
two determined as part of the solution to the model equations given above. For example,
if we choose to specify τL and D then the required fibre tension parameter σ and surface
tension γ are given by (2.24) and (2.26), respectively.
The formulation just described can be used for fibres of any cross section, provided

some method to solve the 2D transverse flow problem is available. For general cross-plane
geometries numerical methods can be deployed and a versatile approach to this class of
problems using a spectral method combined with a conformal mapping description of
the free boundaries has recently been presented by two of the authors (Buchak and
Crowdy 2014). But, remarkably, it happens that the two-dimensional problem for the
quasi-steady evolution of free surface Stokes flows driven purely by surface tension is
known to admit a rich variety of analytical solutions and we have chosen to focus on
such solutions in this paper. Besides the geometrically simple case of a concentric annular
tube there are known analytical solutions involving non-trivial geometries due to Hopper
(1990), Richardson (1992), Crowdy and Tanveer (1998a,b), Cummings, Howison and
King (1999), Richardson (2000), Crowdy (2003), among others. Without exception, these
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exact solutions derive from a complex variable formulation of two-dimensional Stokes
flow, one involving so-called Goursat functions common in plane elasticity (Langlois
1964; Muskhelishvili 1977).

The general formulation above can be combined with any of these analytical solutions;
the latter can be used to compute the key governing function H(τ). To illustrate the
power of our model formulation, we first consider in section 3 a non-trivial geometry.
Then, in section 4 we look at the important case of a concentric annulus, which readily
allows detailed analysis from which much may be learned.

3. Case study 1: non-circular tubes

As a first case study for the general framework we consider non-circular tubes formed
by the sintering and drawing of N > 3 near-circular discs of fluid placed in a rotationally
symmetric array around an inner hole and just touching (figure 3, top, left). Our principal
motivation for choosing this example is the fact that we can make use of known exact
solutions for the evolution of such doubly connected cross-plane geometries (Crowdy and
Tanveer 1998b; Richardson 2000; Crowdy 2003) to determine H(τ). While this example
is a good showcase for the general framework described above it is also not without
physical interest: it arises in the making of a fibre coupler, a process whereby multiple
fibres are heated and pulled in order to merge them into a single fibre (Howell 1994;
Cummings and Howell 1999).

3.1. The transverse flow

Initially the two-dimensional cross section is a doubly connected domain. A convenient
form of the explicit solution for the evolution of the doubly connected cross section, before
hole closure, has been given by Crowdy (2003). At a critical time (dependent on N , the
values of which are recorded by Crowdy (2003)) the central hole closes up rendering the
domain simply connected although, since we are principally concerned here with annular
fibres, we terminate our calculations before this hole closure time. The shape of the cross-
plane is given as the image of a preimage annulus ρ(τ) < |ζ| < 1 in a parametric complex
ζ-plane under the time-evolving conformal map

z(ζ, τ) = A(τ)f(ζ, τ), f(ζ, τ) = ζ
PN (ζρ(τ)2/Na(τ)−1, ρ(τ))

PN (ζa−1, ρ(τ))
, (3.1a)

where we can choose any N > 3 (corresponding to the number of near-circular cylinders
in the annular array). Here,

PN (ζ, ρ) ≡ (1− ζN )

∞
∏

k=1

(1− ρ2kN ζN )(1 − ρ2kNζ−N ), P̂N (ζ, ρ) ≡ PN (ζ, ρ)/(1− ζN ),

(3.1b)
with

A(τ) =

√

P̂N (1, ρ(τ))

πPN (ρ(τ)2/N , ρ(τ))f ′(a(τ)−1, τ)
, (3.1c)

where a prime denotes the partial derivative with respect to ζ, that is, f ′(ζ, τ) =
∂f(ζ, τ)/∂ζ. Condition (3.1c) ensures that the fluid cross section always has unit area as
required by the scaling of the transverse-flow problem (2.10). The above equations are
reproductions of equations (2.16), (2.18) and (3.2) of Crowdy (2003). The time-evolving
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τ = 0.00 x = 0.00

τ = 0.10 x = 0.13

τ = 0.20 x = 0.34

τ = 0.30 x = 1.00

(a) (b)

Figure 3. (a) Snapshots, at various values of τ and their associated x(τ ) values, of the evolution
of the cross-plane solution described in subsection 3.1; the curves show the images of |ζ| = 1
and |ζ| = ρ(τ ) under the map (3.1a). (b) A visualization of the 3D fibre. In this figure, D = 400,
γ = 0.9, and σ = 3.1. The transverse dimensions have been stretched relative to the axial
dimension; constant viscosity is assumed.

parameters ρ(τ) and a(τ) satisfy the ordinary differential equations (Crowdy 2003):

dρ

dτ
= − ρ

4πi

(

∮

|η|=1

dη

η

1

|z′(η, τ)| +
∮

|η|=ρ

dη

η

1

ρ|z′(η, τ)|

)

, (3.2a)

da

dτ
= aI(a−1, τ), (3.2b)

where, for brevity, we have suppressed the dependence of these parameters on τ in our
notation. The definition of the function I(ζ, τ) is given in Appendix A.

For each N the initial values of the parameters ρ, a, and A corresponding to N near-
circular cylinders that are just touching are recorded in Table 1 of Crowdy (2003). The
ordinary differential equations (3.2a) and (3.2b) are solved numerically using the Runge-
Kutta fourth-order method, with A(τ) obtained from the algebraic condition (3.1c). All
integrals around the circles |η| = 1 and |η| = ρ are evaluated using the trapezoidal rule.

It should be emphasized that, in contrast to the analytic solution of Griffiths and Howell
(2007, 2008) which is an asymptotic solution approximating the evolution of viscida with
sufficiently thin walls, the solution for N sintering cylinders just described above is exact
and no approximation is involved in solving for the cross-plane evolution.

3.2. Axial stretching and the 3D neck-down geometry

To couple the transverse flow to the axial flow we must determine the total perimeter
length Γ̃(τ) from the transverse-flow solution. For this example we can make use of the
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formulas

Γ̃(τ) =

∮

ds =

∮

|dz| =
∮

|z′(ζ, τ)| |dζ| = −i

∮

|ζ|=1

|z′(ζ, τ)|
ζ

dζ − iρ

∮

|ζ|=ρ

|z′(ζ, τ)|
ζ

dζ

(3.3)
which only requires knowledge of z′(ζ, τ) which can, in turn, be computed from knowl-
edge of the conformal map (3.1a); details on this calculation are given in Appendix A.
Knowledge of Γ̃(τ) facilitates calculation of the function H(τ) as defined in (2.18). The
latter function is all that is needed from the transverse flow problem to determine the
3D fibre geometry.
We choose the value of τL (which effectively dictates what cross-sectional profile we

want at the end of the draw) and set the draw ratio D, thus setting the value of Q from
(2.24b). Parameter P is then found by solving (2.27), allowing γ to be calculated from
(2.26). Finally σ can be obtained from (2.24a).
With the function H(τ) and the parameters γ and σ known, S(τ) can be calculated

from (2.19) and m(x(τ)) from (2.22b). For a given choice of viscosity µ(x), this gives x(τ)
and S(x), allowing the full 3D fibre geometry to be obtained.
The evolution of an example cross section for N = 4 and with draw ratio D = 400 is

shown in figure 3; both the cross-sectional profiles, labelled with their respective values
of τ , and the fully three-dimensional realization of the simulation are juxtaposed.

4. Case study 2: circular tubes

As a second case study we apply the method of section 2 to drawing of circular tubes
for which the cross-sectional domain is the region between two concentric circles. This
problem was considered by Fitt et al. (2002) using a 1D Navier-Stokes model but with-
out coupling to a model for the transverse flow, so that a complete solution was not
determined, while Yarin et al. (1994) obtained numerical solutions for thin-walled tubes
in the case of non-negligible surface tension. A thin-walled circular tube is one of the
cases for which the approach of Griffiths and Howell (2008) is appropriate and, indeed,
those authors showed how to retrieve the results of Fitt et al. (2002) within their own
formulation. However, the approach described in the current paper yields a more com-
plete solution without any restrictions on the possible wall thicknesses. Furthermore, this
relatively simple case admits a closed-form solution and analysis of it will inform future
investigations of more complex geometries requiring numerical solution. In particular,
from a study of this annular tube example in explicit detail, it is possible to gain some
important insights into the solution of the so-called “forward” and “inverse” problems.
The first case study demonstrated how to determine a full three-dimensional fibre from
knowledge of a given initial preform cross section, which is the “forward problem”. In
many practical applications, however, it is very often the final fibre geometry that is
known and it is desirable to ascertain the appropriate initial preform geometry, as well
as the associated experimental draw parameters, needed to produce it. This “inverse
problem” is, typically, much more difficult to solve than the forward problem, but it is
also more important in practice.
Finally, this simple example affords us a preliminary validation of our model against

experimental data and this is described in subsection 4.4.

4.1. The transverse flow

We first obtain the transverse flow by solving for the surface-tension-driven flow in an
annular domain of unit area, i.e. S = 1. For this it is convenient to use polar spatial
coordinates (r, θ), where r is the radial coordinate and θ is the azimuthal coordinate.
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Let r̃ = R(τ) be the radius of the outer circular boundary and r̃ = ρ(τ)R(τ) be the
radius of the inner circular boundary. Then

1 = πR2(1 − ρ2) ⇒ R =
1

√

π(1− ρ2)
. (4.1)

The initial geometry is given by ρ0 = ρ(0) which determines R0 = R(0) or vice versa.
Alternatively we may specify the final geometry ρL = ρ(τL) or RL = R(τL).
In polar coordinates, the axisymmetric form of (2.12a)–(2.12c), (2.12e)–(2.12c), to be

solved for the radial velocity ṽ(r̃) and the pressure p̃(r̃) is

1

r̃

∂

∂r̃
(r̃ṽ) = 0, (4.2a)

∂p̃

∂r̃
+

1

r̃

∂

∂r̃

(

r̃
∂ṽ

∂r̃

)

− ṽ

r̃2
= 0, (4.2b)

−p̃+ 2
∂ṽ

∂r̃
= −κ̃, on G = 0, (4.2c)

∂G

∂τ̃
+ ṽ = 0, on G = 0, (4.2d)

where G = GO +GI , GO = r̃ − R(τ) and GI = ρ(τ)R(τ) − r̃, and κ̃ = 1/R on GO = 0
and κ̃ = −1/(ρR) on GI = 0. Solution of (4.2a)–(4.2c) yields

ṽ = − ρR

2r̃(1− ρ)
, p̃ =

1

R(1− ρ)
, (4.3)

while the kinematic condition (4.2d) gives

dR

dτ
= − ρ

2(1− ρ)
,

d

dτ
(ρR) = − 1

2(1− ρ)
(4.4)

and, on summing and integrating,

R(1− ρ) =
τ

2
+ α0 (4.5)

for some constant α0 which quantifies the initial geometry. Substituting for R from (4.1)
gives, with a little manipulation,

α(τ) =

√

1− ρ

π(1 + ρ)
= α0

(

τ

2α0

+ 1

)

, (4.6)

where α0 = α(0), from which we find

ρ(τ) =
1− πα2

1 + πα2
(4.7)

and

Γ̃(τ) = 2πR(1 + ρ) =
2

α
=

2

α0

(

τ

2α0

+ 1

)−1

. (4.8)

The inner hole closes when ρ = 0 (α = 1/
√
π) at τ = τmax, where

τmax = 2

(

1√
π
− α0

)

, (4.9)

and beyond this time this model is not valid (ρ(τ) becomes negative) and must be replaced
by a unit circle with no interior holes. Since the aim is to preserve interior holes, we do
not consider τ > τmax.
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Putting α(τL) = αL into (4.6) gives

τL = 2(αL − α0). (4.10)

For given αL < 1/
√
π (ρL > 0), we need not be concerned with closure of the interior

hole. However, we now require α0 > 0 (ρ0 < 1) and, therefore, τL < 2αL. Note that
αL > α0, i.e. αL/α0 > 1.

4.2. Axial stretching and the 3D neck-down geometry

We next determine the change in cross-sectional area with axial position x due to both
surface tension and axial stretching, for some given viscosity profile µ(x) and, hence,
function m(x) and value M = m(1).
We start with the forward problem and therefore take α0 to be known. From (2.18)

and (4.8), we have

H(τ) = exp

(

− 1

12

∫ τ

0

Γ̃(τ ′)dτ ′
)

=

(

τ

2α0

+ 1

)−1/3

. (4.11a)

It is then easy to establish that

∫ τ

0

H(τ ′)dτ ′ = 3α0

[

(

τ

2α0

+ 1

)2/3

− 1

]

, (4.11b)

S(τ) =

(

τ

2α0

+ 1

)2/3
{

1− 3α0σ

γ

[

(

τ

2α0

+ 1

)2/3

− 1

]}2

, (4.11c)

m(x(τ)) = − 1

σ
log

{

1− 3α0σ

γ

[

(

τ

2α0

+ 1

)2/3

− 1

]}

, (4.11d)

(4.11e)

with expressions for u(τ) and x(τ) then following directly from (1.2).
Given two of the four parameters τL, D, σ, γ, we can compute the remaining two

parameters using the relations

Q =
√
D

(

τL
2α0

+ 1

)1/3

=
√
D

(

αL

α0

)1/3

, (4.12a)

P =
γ

3α0

[

(

τL
2α0

+ 1

)2/3

− 1

]−1

=
γ

3α0

[

(

αL

α0

)2/3

− 1

]−1

, (4.12b)

together with the relation (2.27) between P and Q. The final fibre geometry αL follows
from (4.10).
Solutions for any given value of α0 may be computed over a grid of points (τL, D),

0 6 τL 6 τmax, 0 6 D 6 Dmax, for some chosen value Dmax and τmax given by (4.9). For
a given final geometry, hence choice of D and τL, there is a unique set of parameters γ
and σ.
The inverse problem is solved similarly. We take αL to be known and compute solutions

over a grid of points (τL, D), 0 6 τL 6 2αL, 0 6 D 6 Dmax, for some chosen value Dmax.
Figures 4 and 5 show solutions of the forward problem for α0 = 1/

√
3π (ρ0 = 0.5).

Figure 4(a) shows the geometry over 0 6 x 6 1 for drawing of a fibre with parameters
γ = 0.5 and σ = 2, and with a viscosity µ = 1 that is independent of spatial position
x so that m(x) = x and M = 1. To illustrate a non-constant viscosity, figure 4(b)
shows the physical geometry for the same parameters and with the viscosity profile
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Figure 4. Geometry over 0 6 x 6 1 for α0 = 1/
√
3π (ρ0 = 0.5), γ = 0.5 and σ = 2,

with viscosity profiles (a) µ(x) = 1 and (b) µ(x) = exp(x − 0.5). The solid curve is the outer

boundary r(x) = R
√
S, the dashed curve is the inner boundary r(x) = ρR

√
S, and the dash-dot

curve shows the cross-sectional areal S(x).
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Figure 5. Solutions of the forward problem for α0 = 1/
√
3π (ρ0 = 0.5) shown as con-

tours of Mγ(D, τL) and Mσ(D, τL). (a) Contours Mγ = 0.1, 0.2, . . . , 1.1 (bottom to top) and
(b) Mσ = 0.2, 0.4, . . . , 1, 1.1, 1.2, . . . , 2.4 (left to right). For a given final geometry, i.e. choice of
D and τL, and a given viscosity modification factor M , there is a unique set of parameters γ, σ.

µ(x) = exp(x− 0.5) so that m(x) = exp(0.5)[1− exp(−x)] and M = 2 sinh(0.5). Now we
suppose that the scaled surface tension γ is fixed by the properties of the fibre material
and the setup of the drawing tower and, in figure 5(a), show contours of Mγ in (D, τL)
space for 0 < D 6 100. Figure 5(b) shows the corresponding Mσ-contours. By plotting
contours of viscosity-modified surface tension and fibre tension, Mγ and Mσ, rather
than just γ and σ, we obtain plots that are applicable for any viscosity profile. For given
values of the draw ratio D = 1/SL and Mγ we may read τL from figure 5(a) and, hence,
compute the final geometry αL. Figure 5(b) then gives the fibre tension Mσ needed to
draw this fibre from a preform with geometry α0.
Next we choose αL =

√

2/(3π) (ρL = 0.2) and solve the inverse problem to determine
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Figure 6. Solutions of the inverse problem for αL =
√

2/(3π) (ρL = 0.2) shown as con-
tours of Mγ(D, τL) and Mσ(D, τL). (a) Contours Mγ = 0.1, 0.2, . . . , 1.6 (bottom to top) and
(b) Mσ = 0.2, 0.4, . . . , 1, 1.1, 1.2, . . . , 3.5 (left to right). For a given final geometry, i.e. choice
of D, and a given viscosity modification factor M , there are many choices of initial condition
(τL) and parameters γ, σ that will yield the desired fibre. For a given value of γ, there are, in
general, two choices of initial condition and fibre tension σ that will yield the desired fibre.

the initial conditions and draw parameters that will yield this fibre geometry. Figure 6(a)
shows contours of Mγ in (D, τL) space. We see that for a given value of γ, a given fibre
geometry, specified by αL and D, may, in general, be drawn from two different initial
geometries. Because the contours are, in fact, parametrised by the fibre tension σ, the
two initial geometries correspond to using different values of the fibre tension in the
draw process. Figure 6(b) shows contours of Mσ. The change in Mσ as we traverse
an Mγ-contour may be seen by superimposing these two plots. For any fibre geometry
αL, figures similar to figure 6(a), (b) can, therefore, be used to determine all fibre-
drawing parameters and the initial geometry. Another representation of the fibre drawing
information is to plot contours of Mγ in (D,Mσ) space, as done in Griffiths and Howell
(2008) for drawing of thin-walled tubes. Figure 7 shows this for drawing of annular fibres
with αL =

√

2/(3π), i.e. a tube which does not have a thin wall. These curves are
parametrised by the deformation time τL (equivalently α0).
Having solved a forward or inverse fibre-drawing problem we may compute ρ(τ) and

R(τ), 0 6 τ 6 τL. Physical external and internal radii are obtained by multiplying by
√

S0S(τ), where S0 is the physical area at x = 0, and S(τ) is the cross-sectional area
scaled by S0 which is given by (4.11c). We note that ρ(τ) and, hence, R(τ) are strictly
monotonic decreasing functions of τ . However, S may not be a decreasing function of
τ . This suggests the question: under what conditions will the physical fibre radius be
smaller than the physical preform radius? For this we require

R0 >
√

SLRL ⇒
√
D >

RL

R0

, (4.13)

or
√
D > f(α0, αL), f(α0, αL) =

α0(1 + πα2
L)

αL(1 + πα2
0)
. (4.14a, b)

Now, 0 < α0 < 1/
√
π and α0 6 αL < 1/

√
π and, for given α0, f(α0, αL) is a decreasing

function of αL over the physically meaningful range of αL, taking its maximum value
f = 1 when αL = α0. Then, for f(α0, αL) <

√
D < 1 the final ‘fibre’ will have smaller

physical external radius than the preform, while the cross-sectional area will be larger
than that of the initial preform. For

√
D > 1 both the physical external radius and the
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Figure 7. Viscosity-modified fibre tension Mσ versus draw ratio D for αL =
√

2/(3π)
(ρL = 0.2) and Mγ = 0, 0.4, 0.5, . . . , 1.0. The curves are parametrized by τL (equivalently
α0) and the arrow shows the direction of decreasing τL (increasing α0).

cross-sectional area of the final fibre will be smaller than those of the preform, and this
is the case for fibre drawing for which D ≫ 1.

4.3. Fibre buckling and other stability issues

As discussed in the Introduction, we are not concerned with an upper limit on the draw
ratio to avoid draw resonance, because of the large draw ratios used successfully in
practice. However, as also noted earlier, buckling is to be expected if the fibre tension is
negative, i.e. a compressive force (Tchavdarov et al. 1993), so that we do require σ > 0
or Q > 1 or

√
D > (α0/αL)

1/3. Since α0/αL 6 1, this is certainly true for D > 1 and,
hence, in fibre drawing. Although not relevant to practical fibre drawing, it is interesting
to note from (4.14) that f(α0, αL) > (α0/αL)

1/3, so that for draw ratios in the range
f(α0, αL) <

√
D < 1, just discussed above, for which the ‘fibre’ has smaller external

radius and larger cross-sectional area than the preform, the fibre tension is positive and
buckling instability is not of concern. This is a result of surface tension; when the effect
of surface tension is small so that αL ≈ α0 we essentially have compression of the fibre
for D < 1.
As seen in figure 7 and as noted by Griffiths and Howell (2008), for any given value of

γ (taking the viscosity modification factor M to be a known constant) there is a region
in the vicinity of the minimum value of the draw ratio D in which the fibre tension
σ is a decreasing function of D. Griffiths and Howell (2008) reason that such a region
“surely cannot be stable” and also claim that the upper branch of the fibre-tension
versus draw-ratio curve for a given value of scaled surface tension γ is likely to represent
unstable solutions because of “physically implausible behaviour”. These conclusions seem
to be motivated by an assumption that the modelling should yield a unique stable initial
geometry, fibre tension and draw ratio that will yield the desired fibre geometry for a
given value of γ. It is not clear to us that this must be so or that instability is likely
for the reasons given. As already discussed buckling instability is only to be expected
when the fibre tension is negative. On the other hand draw-resonance instability is not
really a practical problem and, in any case, is a consequence of a sufficiently large draw
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ratio (Yarin et al. 1994), which is not restricted to one branch of the (D, σ) curve, and,
in addition, the region of probable instability identified by Griffiths and Howell (2008)
(in which the tension decreases with draw ratio) is in the vicinity of the minimum draw
ratio. Noting that the Mγ contours in (D, σ) space are parametrised by τL, equivalently
α0, our conclusion is that the mathematics indicates that a given geometry can be drawn
from two different initial conditions with an appropriate choice of the fibre tension. It is
to be expected that the draw parameters will depend on the initial geometry and that
one initial geometry will enable smaller draw ratio and fibre tension. The fibre tension
σ is a decreasing function of D where the draw ratio is near to its minimum value but,
provided D > (α0/αL)

1/3, there is no real reason to suspect instability. Rather, this is a
consequence of change in the initial geometry from which the fibre is drawn. Nevertheless,
the higher fibre tension may cause breaking of the fibre and not be appropriate on that
account.
In practice fluctuations during fibre drawing of the preform geometry (i.e. α0), the

fibre tension, the draw speed, the temperature and, hence, M , or the value of γ which
depends on the feed speed (as well as material properties and the slenderness of the
geometry) will almost certainly result in modification of the final fibre geometry which
is determined by the initial geometry and the draw parameters.

4.4. Model validation

The authors are currently engaged in exploring the full experimental implications of the
model presented in this work; the results of that ongoing work will be presented in detail
elsewhere. It is possible, however, to offer some preliminary evidence that validates our
model.
We selected drawing of capillaries from F2 glass, a commercial lead-silicate glass from

Schott Glass Co. (2014). An F2 glass capillary of external diameter ∼ 150µm (RF ∼
75µm) is typically drawn from a preform of external diameter 10mm (RP = 5mm) and
with a central air channel of diameter 2mm (ρ0 = 0.2, S0 = 25π(1 − 0.22) ≈ 75mm2)
using a fibre tension of around σ = 0.3N and a viscosity in the range µ = 105−106Pa · s.
Typical values of the feed speed and the neck-down length are U0 = 1.4mm/m and
L = 4 cm, respectively. Then D ≈ (Rp/Rf )

2 ≈ 4400. The surface tension of F2 glass has
been measured at γ = 0.23N/m (Boyd et al. 2012).
Running the forward model using D = 4400, α0 =

√

2/(3π) (ρ0 = 0.2), for 0 6 τL 6

τmax, gives the scaled viscosity modified surface tension and fibre tension, Mγ∗ and Mσ∗,
as functions of τL as shown in figure 8. Here we have again introduced stars to denote
scaled fibre tension and surface tension, while parameters without stars denote physical
quantities.
In order to determine physical draw parameters from our model solution, we need

to obtain dimensional information from the dimensionless parameters D, α0, Mγ∗ and
Mσ∗. The physical fibre tension and surface tension are given by (refer (2.3) and (2.7))

σ =
6µ̂U0S0

L
Mσ∗, γ =

µ̂U0

√
S0

L
Mγ∗, (4.15a, b)

where µ̂ = µ0/M is the viscosity-modified viscosity which we here call the effective vis-
cosity. In the case of constant viscosity, M = 1 and µ0 = µ̂. Since γ is a specified physical
quantity, we use (4.15b) to compute µ̂ corresponding to Mγ∗, from which we, in turn,
compute the effective temperature T via the Vogel-Fulcher-Tamann (VFT) temperature-
viscosity relation for F2 glass (Richardson 2012):

log10 µ̂ = −2.314 +
4065.2

T − 137
, (4.16)
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Figure 8. Scaled viscosity-modified fibre tension Mσ∗ (solid) and surface tension Mγ∗

(dashed) versus τL, 0 6 τL 6 τmax, τmax = 2(1/
√
π − α0), for α0 =

√

2/(3π) (ρL = 0.2).

where µ̂ is the effective viscosity in Pa·s and T is the effective temperature in ◦C. Fig-
ure 9 (a)–(e) features plots of the physical fibre tension σ, effective viscosity µ̂, fibre
external radius RF , internal radius as a fraction of the external radius ρL, internal ra-
dius ρLRF and effective temperature. For τL ≈ 0.04, i.e. RF ≈ 74.8 µm, we see that
σ ∼ 30 N, µ̂ ∼ 2.7× 105 Pa·s and T ∼ 662◦C, in agreement with the experimental data
supplied. This gives us confidence in the validity of our model.
Finally, we note that in general RP = 5mm and 0 < ρ0 < 0.6 so that 0.18 < ǫ < 0.23

if L = 4 cm. This justifies our primary assumption of small ǫ.

5. The question of uniqueness

The two case studies lead naturally to an important question concerning the uniqueness
of solutions to the inverse problem. For the annular tube example, figure 6(a) shows that
a given fibre geometry can be drawn from two different initial geometries. Is this a feature
that is specific to this particular example or should one expect it when drawing a fibre
of general shape?
While we can not give a definitive answer to this, important insights can be gained

by contrasting figure 6 (pertaining to the concentric annulus case study) with figure 10
which shows the same analysis of the inverse problem carried out for the first case study
of section 3 putting N = 10, for which the initial value of ρ given in Table 1 of Crowdy
(2003) is ρ0 = 0.81. For comparison with the annulus, the same value ρL = 0.2 is used
here as in figure 6. Figure 10(a) and (b) show contours of γ and σ in (D, τL) space,
respectively.
The most obvious difference between the two case studies is that, while the solution for

the axisymmetric annular cross section can be obtained very far backwards in reduced
time, to ρ0 → 1 when the inner and outer boundaries of the cross section meet and the
preform radius becomes infinite, this is not possible for the solution for the nonaxisym-
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Figure 9. Drawing of a glass circular-tube preform with external diameter 10mm (radius
RP = 5mm) and internal diameter 2mm (ρ = 0.2). The glass has surface tension γ = 0.23N/m,
the feed speed is U0 = 1.4mm/m and the draw ratio is D = 4400. The neck-down region is
assumed to have length L = 4 cm. Plotted as functions of the scaled deformation time τL, which
determines the fibre geometry, are (a) the fibre tension (b) the effective viscosity (c) the effective
temperature (d) the external fibre radius RF , (e) the aspect ratio ρL of the annular cross section
of the fibre and (f) the internal fibre radius ρLRF . On each plot ‘+’ marks the point τL = 0.0405
at which σ = 30 g, RF = 74.8 µm, µ̂ = 2.7× 105 Pa s, ρL = 0.158, T = 662◦C, ρLRF = 11.8 µm.
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Figure 10. Solutions of the inverse problem for the example described in section 3, for N = 10
and ρL = 0.2, shown as contours of γ(D, τL) and σ(D, τL). (a) Contours γ = 0.1, 0.2, . . .,
1.0 (bottom to top) and (b) σ = 0.2, 0.4, . . ., 2.4 (left to right). The contours extend to only
τL = 0.422 (endpoints marked ×), above which the value of ρ for the initial configuration exceeds
0.81 and the map is no longer univalent. For a given geometry, there is only one initial condition
that will yield the desired final configuration. This may be contrasted to figure 6.

metric cross section of section 3. When ρ(τ) exceeds the value ρ0, which for finite N is
necessarily less than unity, the boundaries of the sintering cylinders intersect and the
solution becomes non-physical. The requirement that the solution describe a physically
achievable cross section thus limits the reduced time τL over which sintering can occur
to the time it takes ρ(τ) to evolve from ρ0 to ρL. This is shown in figure 10 which is
plotted over the maximum possible range of τL.
This has consequences for the matter of non-uniqueness. It can be seen by comparing

figure 6 and figure 10 that, while a given fibre geometry may be drawn from two different
initial geometries for the annulus, this is not so for the sintering circles; for a given choice
of D and γ, there is at most one initial configuration. We return to this issue again in
the Discussion.

6. Ill-posedness of the inverse problem

Finally, it turns out that the two case studies can also be used to directly illustrate a
further difficulty inherent to the inverse problem. Figure 11 shows cross sections of two
draws with different initial configurations that lead to what are arguably indistinguish-
able final configurations under the same experimental parameters; figure 12 shows 3D
diagrams of the corresponding fibres. Since holes shrink and close over time this situa-
tion of virtually indistinguishable end-states could even occur with initial configurations
having completely different connectivity. This ill-posedness of the inverse surface-tension-
driven planar-flow problem has been recognised by others, for example Yarin (1995) and
Griffiths and Howell (2008).

7. Discussion

A principal contribution of this paper has been to highlight the importance of the
reduced time τ as a natural parameter and the significance of the functionH(τ) defined in
(2.18) which plays a key role in coupling the surface-tension-driven cross-plane evolution
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(a)

(b)

τL = 0.30 τL = 0.25 τL = 0.20 τL = 0.00

Figure 11. Cross sections of (a) an annulus and (b) N = 20 sintering circles using the solution
from subsection 3.1. Each cross section is labeled with τL, the reduced time interval from that
cross section to the final configuration on the right. Both examples are for D = 400 and γ = 0.9.
The final configurations, while different, are visually indistinguishable.

(a) (b)

Figure 12. 3D diagram of the two draws from figure 11. The transverse dimensions have been
stretched relative to the axial dimension.

with the axial stretching. The significance of the function H(τ), and the usefulness of
the τ variable, appears to have been missed by previous investigators.
The formulation makes no assumptions on the cross-plane geometry and this versatility

in the approach clearly has ramifications for its use in a broad spectrum of fibre drawing
applications.
For given initial geometry and draw parameters – that is, the forward problem –
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there is a unique outcome. The inverse problem is of greater practical interest, namely
determining the initial geometry and draw parameters to achieve a desired outcome.
There are multiple options for drawing of a given fibre: many practical factors such as
material properties, temperature control in the draw tower, the temperature dependence
of the viscosity, heat transfer effects, channel pressurization all enter the analysis of which
of these are practically achievable. The model considered here is, in a sense, the most
basic one in that it incorporates only the interaction of axial tension with surface tension.
The temperature dependence of viscosity can be taken into account through a viscosity
modification factor, as we have shown, but, importantly, the model gives the final fibre
geometry for a given preform, draw ratio and surface tension, without any reference
to the viscosity, equivalently temperature, so that where the fibre tension is measured,
knowledge of the glass temperature profile is not required. We have not taken channel
pressurization into account, but this can be incorporated into the model and details
will be presented in a forth-coming paper. A mechanism sometimes used for control of
the fibre draw process, that we have not yet considered and which remains for future
investigation, is rotation of the fibre during drawing so that the resulting fibre has a
twisted geometry (Voyce et al. 2004, 2008).
The two case studies presented in the current paper have shown that the solution to

the inverse problem is not necessarily unique, at least for the case of an annular capillary
tube (case study 2). However a comparison with case study 1 shows that the same feature
of non-uniqueness is absent for the geometrically non-trivial example given there. Based
on this evidence we conjecture that the non-uniqueness in the special concentric annulus
example is not generic and should not be of particular concern in the drawing of a fibre
of general shape.
A natural suggestion for solving the inverse problem is to reverse time and compute a

solution to the backwards-time problem to get predictions for appropriate initial profiles
giving rise to desired end-state profiles. Indeed, this is the strategy suggested and adopted
by previous authors (Griffiths and Howell 2007, 2008) in studying the Vello process
for drawing glass tubing. Those authors also recognized that running the transverse
flow problem backwards in time is inherently unstable since surface tension in forward
time minimizes surface energy and serves to iron out ripples to produce an interface
with constant curvature; in reverse time this process is reversed and surface energy is
injected into the interface implying that even small disturbances, or numerical noise
in a computational scheme, will be susceptible to amplification. Figure 11, based on
our two case study examples, shows precisely this process in action. This ill-posedness
suggests it is important to search for strategic methods to solve the backwards-time
problem in a constrained manner so that the possible outcomes for initial profiles are
consistent with those that are admissible based on other independent considerations.
Griffiths and Howell (2008) succeed in this endeavour by noting the surprising fact that
their asymptotic approach to solving the transverse flow problem also serves to filter out
the growth of extraneous modes in backwards time that would, ordinarily, pollute the
backwards-time calculation (see also Griffiths and Howell (2009)). Similarly, Yarin (1995)
recognised that truncation of a Fourier-series solution of the surface-tension-driven flow
in almost circular geometries enabled solution of the inverse problem.
Our primary interest is in modelling the drawing of more geometrically complicated

fibres such as microstructured optical fibres, or MOFs, which often consist of many
channels extending along their length. In a companion paper (Buchak, Crowdy and Stokes
2014), we present details of a model of MOF drawing based on the new formulation
given here. We believe that such reduced models will be important in practice and will
provide a valuable tool for experimentalists that will require a relatively small amount
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of computational effort but that will be more generally applicable and more accurate
than empirically-based adaptions of the model of Fitt et al. (2002) such as proposed in
Kostecki et al. (2014). We note that some 3D numerical simulations of fibre drawing
have been performed for MOFs having 2–4 air channels (Xue et al. 2005a,b,c), but
this is prohibitively difficult and computationally expensive for the complex structures
typically seen in MOFs (10 – 60 channels, or more) thereby necessitating the need for
more strategic mathematical modelling. The method presented in this paper is capable
of efficient handling of complex structures and yields fundamental understanding not
readily acquired through numerical simulation.
Finally we note that should inertia be important for some application, this can be

incorporated into the model with the effect that the differential equation for the 1D
stretching flow becomes non-linear and must be solved numerically. Although we can no
longer write down the solution in terms of the function H(τ), the stretching problem is
still coupled to the transverse flow problem by the total boundary length and, for a given
preform and surface tension, the final fibre geometry is still determined by the draw ratio
and the fibre tension.

Acknowledgements: This research is supported by a Research Grant from the Lever-
hulme Trust in the United Kingdom and grant DP130101541 from the Australian Re-
search Council. It was in part performed at the Optofab node of the Australian National
Fabrication Facility utilizing Commonwealth and SA State Government funding.

Appendix A

Subsection 3.1 involves use of a function I(ζ, τ) given in Crowdy (2003). For com-
pleteness, and to correct a minor typographic error in the original paper, we include it
here:

I(ζ, τ) = I+(ζ, τ) − I−(ζ, τ) + C(τ), (A 1)

where

I+(ζ, τ) =
1

4πi

∮

|η|=1

dη

η

(

1− 2
ζ

η

P ′
1(ζ/η, ρ)

P1(ζ/η, ρ)

)

1

|z′(η, τ)| , (A 2)

I−(ζ, τ) =
1

4πi

∮

|η|=ρ

dη

η

(

1− 2
ζ

η

P ′
1(ζ/η, ρ)

P1(ζ/η, ρ)

)(

− 1

ρ|z′(η, τ)| −
2

ρ

dρ

dτ

)

, (A 3)

C(τ) = − 1

4πi

∮

|η|=ρ

dη

η

(

− 1

ρ|z′(η, τ)| −
2

ρ

dρ

dτ

)

. (A 4)

Note that in these integrands z′ is evaluated at η, not at ζ as indicated in Crowdy (2003).
In order to compute the function H(τ) for the first case study we need to compute the

total perimeter Γ(τ). As seen from (3.3) this requires knowledge of the function z′(ζ).
From (3.1a) it can be shown that

ζz′(ζ, τ)

z(ζ, τ)
=

ζf ′(ζ, τ)

f(ζ, τ)
= 1 +KN (ζρ2/Na−1, ρ)−KN(ζa−1, ρ), (A 5)

with the function KN(ζ, ρ) defined by the infinite sum

KN(ζ, ρ) ≡ ζP ′
N (ζ, ρ)

PN (ζ, ρ)
= − NζN

1− ζN
−

∞
∑

k=1

Nρ2kNζN

1− ρ2kN ζN
+

∞
∑

k=1

Nρ2kN/ζN

1− ρ2kN/ζN
. (A 6)
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The perimeter Γ(τ), and hence H(τ), can be readily computed on use of these formulas.
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